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Abstract

In this work, the theory of semiconductor single- and two-qubit quantum logic gates based
on electrostatically defined quantum wires and quantum dots is studied. A concrete proposal
for an all-electric Mach-Zehnder interferometer is worked out by detailed, numerical calcula-
tions of its electronic structure and ballistic quantum transport properties. It is shown that
this Mach-Zehnder interferometer acts as a single-qubit gate for electrons propagating in ei-
ther of two quantum wires. The proposal is based on an AlGaAs/GaAs heterostructure and
includes the detailed three-dimensional geometry, material compositions, doping profiles, and
bias voltages. The device is well within the reach of present-day experimental fabrication tech-
niques. A novel quantum transport device is presented that acts as a two-qubit gate. It is
based on the all-electric Mach-Zehnder interferometer and a double quantum dot. We show
that this device allows for the controlled generation and detection of entanglement from DC
1-V characteristics. The entanglement between the two qubits has been calculated for a fully
three-dimensional model of the device. To this end, a new quantum transport method has
been developed that allows one to take into account the Coulomb interaction between two elec-
trons non-perturbatively. A dynamic, analytical model of the two-qubit device is proposed and
an analytical relation is derived for quantifying the von Neumann entropy from the DC -V
characteristics.

A second topic of this work is the study of material aspects of semiconductor based quantum
information processing. The ballistic tunneling current through an InAs/InP quantum dot
molecule embedded in a resonant tunneling diode is calculated for a realistic, three-dimensional
model of the molecule. We predict that a wealth of unique information on the size, inter-dot
distance, lateral alignment, and electronic states can be obtained by measuring this tunneling
current. Finally, the level ordering in AlAs cleaved-edge overgrown quantum wires and its
influence on the transport properties is studied by calculating the electronic states charge self-
consistently including strain, doping profiles, and piezoelectricity.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Theorie halbleiterbasierter 1- und 2-Qubit-Quantenlogik-
gatter aus Quantendrihten und Quantenpunkten. Mit Hilfe von detaillierten, numerischen
Berechnungen der elektronischen Struktur sowie des ballistischen Quantentransportes haben wir
einen konkreten Entwurf fiir ein rein elektrisches Mach-Zehnder Interferometer ausgearbeitet.
Wir zeigen, dass dieses Mach-Zehnder Interferometer fiir Elektronen, die durch einen von zwei
Quantendriahten propagieren, ein 1-Qubit-Quantenlogikgatter darstellt. Unserem Entwurf fiir
das Bauelement liegt eine AlGaAs/GaAs Heterostruktur zugrunde. Im Einzelnen umfasst der
Entwurf die detaillierte dreidimensionale Geometrie, Materialien, Dotierprofile und Gatterspan-
nungen und sollte sich mit den heutigen experimentellen Techniken herstellen lassen. Auf
der Grundlage dieses Mach-Zehnder Interferometers und eines Doppelquantenpunktes schlagen
wir ein neues Quantentransport-Bauelement vor, mit dem sich ein 2-Qubit-Quantenlogikgatter
realisieren ldsst. Wir zeigen, dass die beiden Qubits in diesem Bauelement kontrolliert ver-
schriankt werden konnen und dass diese Verschrinkung iiber die Gleichstrom-Stromspannungs-
kennlinie nachzuweisen ist. Zur Berechnung der Verschrankung wird ein vollstindig dreidimen-
sionales Modell des Bauelementes verwendet. Hierzu haben wir auch eine neue Quantentrans-
portmethode entwickelt, mit der die Coulombwechselwirkung zwischen zwei Elektronen nicht-
perturbativ berticksichtigt werden kann. Des Weiteren wird ein dynamisches, analytisches Mo-
dell des 2-Qubit-Bauelementes erarbeitet und es wird eine analytische Beziehung hergeleitet,
mit der die von Neumann Entropie aus der Gleichstrom-Stomspannungskennlinie bestimmt
werden kann.

Ein zweites Thema dieser Arbeit ist die Untersuchung von Materialaspekten halbleiter-
basierter Quanteninformationsverarbeitung. Hier haben wir den ballistischen Tunnelstrom
durch ein in eine resonante Tunneldiode eingebettetes InAs/InP Quantenpunktmolekiil berech-
net, wobei das Molekiil als realistisches, dreidimensionales Modell beriicksichtigt wurde. Aus
unseren Berechnungen folgt, dass die Messung des Tunnelstroms eine Vielzahl einzigartiger
Daten iiber die Grofle der Quantenpunkte, deren Abstand und laterale Ausrichtung sowie die
elektronischen Zustéinde liefert. Im letzten Teil der Arbeit untersuchen wir die Anordnung
der elektronischen Niveaus in CEO Quantendrihten aus Aluminiumarsenid und deren Ein-
fluss auf die Transporteigenschaften. Hierzu berechnen wir ladungsselbstkonsistent die elek-
tronischen Zusténde unter Beriicksichtigung von Verspannungen, Dotierprofilen und piezoelek-
trischen Ladungen.

vii



viii ZUSAMMENFASSUNG



Introduction

The power of today’s computers is a consequence of the continuous miniaturization in the area
of semiconductor based integrated logic and memory chips. These days, the ultimate end of
this process can be anticipated by the arrival of the atomic length scale. However, the end
of miniaturization is not the only limitation that information processing has to face. Rather
there are computational problems that are believed to not have an efficient solution on classical
computers. One of these problems is to find the prime factors of an integer. The realization
that computers based on the principles of quantum mechanics are able to solve these problems
efficiently has triggered an enormous interest and attempt to build such quantum computers.
Up to now there is no consensus on the best approach for quantum computers. The requirements
of long decoherence times and a high degree of scalability seem to be mutually exclusive.

In this thesis we focus on semiconductor based approaches for quantum computers that
in general promise good scalability but suffer from short decoherence times. The topic is to
study the physics of quantum logic gates build from semiconductor nanostructures by detailed,
numerical calculations within realistic, three-dimensional models. The goal of these studies is to
provide concrete proposals for the realization of semiconductor quantum logic gates including
the detailed geometry, material compositions, doping profiles, and bias voltages. In this, our
work differs fundamentally from the majority of approaches whose objectives are to identify the
general possibilities for quantum information processing in semiconductors by means of simple
models. These are essential in understanding the basic physical relations. For the interpretation
of our results we therefore also rely on simple, analytical models. However, they are often not
sufficient to support the experimentalists in a concrete experimental realization.

The physics of quantum computation poses new requirements on methods and tools for
the simulation of semiconductor devices for quantum information processing. To mention the
most important only, quantum mechanical many-body effects such as entanglement require
including two-particle interactions non-perturbatively. Besides simulations, an important part
of this thesis has therefore been the development of novel computational methods as well as
the development of the new software packet nextnano-++ that has established the basis for the
computationally demanding calculations.

This thesis is organized as follows: In the first chapter an overview on the theoretical
background of simulating semiconductor based devices for quantum information processing is
given. This includes the calculation of the electronic structure taking into account different
materials, impurities, elastic strain, deformation potentials, piezo- and pyroelectric charges,
as well as currents in a fully self-consistent manner. The second chapter summarizes the
numerical methods for the solution of this computationally demanding problem. Here we
begin with the discretization scheme for the various partial differential equations such as the
Schrodinger equation, the Poisson equation, the current equation, and the strain equation. We
then introduce the iterative methods for solving the resulting linear systems of equations and

X
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large matrix eigenvalue problems. We conclude the chapter by presenting several approaches
for the self-consistent solution of non-linear as well as coupled systems of equations.

The implementation of the presented physical models as well as the methods for their
solution in the framework of an actual software packet is a task that easily surpasses the
manpower of a single Ph.D. student. However, a modular approach as well as the use of
modern object oriented programming techniques such as inheritance and generic programming
in combination with the use of standard components allows for a straightforward breakdown of
the overall problem. This is illustrated in Chapter 3.

In the following chapters we turn to the key elements of this work, namely the prediction
and simulation of semiconductor based devices for quantum information processing. This also
includes the development of novel methods for the calculation of specific properties of such
devices as well as the development of simplified models for an in-depth analysis of the obtained
results. It is well known that universal quantum computation requires single as well as two-qubit
quantum gates. As an example of a single-qubit gate, we have analyzed a concrete quantum
transport device built from two parallel quantum wires that are coupled by two potential wells
(coupling windows). The two quantum wires define the qubit states for electrons that propagate
through the wires. This device acts as an all-electric Mach-Zehnder interferometer and allows
one to prepare the propagating electrons in an arbitrary linear combination of the two qubit
states. We show theoretically that the device can be realized by state-of-the-art experimental
techniques in a modulation doped AlGaAs/GaAs heterostructure. In particular, our analysis
has identified the coupling windows as the most critical components of the Mach-Zehnder
interferometer that require for a high degree of fabrication precision.

On the basis of the single-qubit gate we have proposed and analyzed a novel quantum
transport device that acts as a two-qubit gate. Here, the idea is to couple the all-electric
Mach-Zehnder interferometer via the Coulomb interaction to an electrostatically defined single
electron double quantum dot. The basis of any non-trivial two-qubit quantum gate is entan-
glement. The calculation of the quantum properties of a two-qubit gate therefore requires
methods that allow for the inclusion of many-body correlation effects such as entanglement.
Thus we have developed a method for the calculation of the ballistic quantum transport in
realistic, three-dimensional two-particle systems that includes the Coulomb interaction non-
perturbatively. We have used this method to predict and analyze a concrete realization of the
proposed two-qubit quantum transport device based on two vertically stacked two-dimensional
electron gases in an AlGaAs/GaAs heterostructure. In particular, we could identify the opti-
mum geometric arrangement of the Mach-Zehnder interferometer and the double quantum dot.
To help in understanding the basic physics of the proposed device, we have developed a simpli-
fied analytical model. This model allows us to derive an explicit analytical relation between the
visibility of the Mach-Zehnder interference pattern and the von Neumann entropy. Therefore,
it is possible to determine the degree of entanglement from the DC [-V characteristics of the
Mach-Zehnder interferometer.

While for the study of quantum logic gates the focus has been on the device physics, in
Chapter 7 we turn towards the material aspects of semiconductor based quantum information
processing and its characterization by current measurements. Quantum dots grown epitaxially
by self-assembly are ideal candidates for the realization of spin as well as excitonic qubits. In
addition, the strain induced growth of stacks of such quantum dots, also known as quantum
dot molecules, offers the possibility to easily fabricate multiple coupled qubits. However, as
only poor control over the growth condition is given, the individual quantum dots may vary in
size, shape, alloy composition, inter-dot distance, and their lateral alignment. These properties
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strongly affect the electronic structure and inter-dot coupling, but for the buried quantum
dots cannot be determined by direct measurements. Optical spectroscopy is one approach for
an indirect, in-situ measurement of the mentioned properties. We have performed detailed,
numerical calculations of the ballistic tunneling current for realistic, three-dimensional models
of double dot molecules. From these calculations we predict that measurements of the ballistic
tunneling current provide a wealth of information on the geometry and the electronic states
of quantum dot molecules and can therefore be used as an additional method for the in-situ
characterization of quantum dot molecules. The second application in this chapter is the self-
consistent calculation of the electronic states in AlAs cleaved-edge overgrown quantum wires
including strain, doping profiles, and piezoelectricity. AlAs quantum wires are well suited for
studying electronic correlation effects. The physics of electronic correlations, unintentional
ones as well as intentional ones, is of great importance in quantum information processing.
Here, our theoretical calculations have contributed considerably to the understanding of recent
measurements of the transport properties of strained AlAs cleaved-edge overgrown quantum
wires.
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Chapter 1

Simulation of semiconductor quantum
information devices

1.1 Introduction

The idea of quantum information processing dates back to Richard Feynman, who proposed
in 1982 to use artificial quantum systems with specifically designed interactions to simulate
and help in understanding the physics of real quantum systems [1]. The desire for quantum
computers grew significantly since 1994, when Peter Shor showed that the important problem
of finding the prime factors of an integer could be solved efficiently on a quantum computer
[2]. The belief that this problem has no efficient solution on a classical computer is the basis
of present-day cryptographic methods. Since then many different concepts for quantum com-
putations have been brought forward and some have also been realized experimentally. Shor’s
algorithm could be demonstrated on a 7-qubit nuclear magnetic resonance (NMR) quantum
computer by factoring the number 15 into its prime factors 3 and 5 [3].

It has turned out that the basic problem is as follows: Approaches such as NMR quantum
computers or trapped ion quantum computers that are well suited in terms of long decoherence
times are very hard to scale up. In contrast, approaches such as solid state based quantum
computers that can be easily scaled up suffer from extremely short decoherence times. As
a consequence, first successful realizations of a single- and a two-qubit system based on the
electron spin in a semiconductor nanostructure could be demonstrated only recently [4, 5].

The difficulties in the experimental realization of the many existing proposals for quantum
information devices based on semiconductor nanostructures show that calculational methods
and tools that allow for a predictive analysis in the context of realistic, three-dimensional models
are essential. Simple models may help in understanding the basic physical relations, but they
are not sufficient to support the experimentalists in a concrete experimental realization. The
development of an appropriate simulation tool (nextnano++) and its application to the physics
of semiconductor based devices for quantum information processes is the topic of this work.

In this chapter, we address the theoretical background for realistic, three-dimensional cal-
culations of semiconductor nanostructures for quantum information processing. Here, the main
focus is obviously the quantum mechanical determination of the electronic structure. For this,
we employ the 1-band, 6-band, or 8-band k - p method in envelope function approximation,
including the Hartree interaction as well as exchange and correlation by means of the local spin
density approximation. Furthermore, we allow for arbitrarily shaped three-dimensional device
geometries and for any combination of group IV elementary and III-V compound semiconduc-
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tor materials and alloys. Our theory includes band offsets, deformation potentials, total elastic
strain energy, the long range Coulomb potential induced by charged impurities, piezo- and
pyroelectric charges, as well as surface charges in a fully self-consistent manner. The current
evaluation is restricted to situations close to equilibrium where either the concept of local quasi
Fermi levels or ballistic quantum transport is applicable.

1.2 Theory

1.2.1 Band structure

One of the most immediate consequences of the periodic structure of crystalline solids is the
arrangement of the electronic states within bands. This so called band structure has a particular
importance for semiconductors as many properties of semiconductors are determined by only a
small number of these bands. In this section, we will therefore illustrate the origin of the band
structure in bulk semiconductors and present the k& - p method for band structure calculations.
We will then discuss the most important & - p models for the valence and conduction bands in
group IV elementary as well as III-V compound semiconductors.

In semiconductor hetero- and nanostructures the discrete translational symmetry of the
crystal is broken. However, the envelope function approximation (EA) allows the calculation
of the electronic structure of such systems on the basis of the bulk band structures. We will
illustrate the EA in the context of the k - p method and we will briefly address the issue of
discontinuities in the band energies of different semiconductor materials.

Bloch theory

A crystal is characterized by its regular, periodically repeated structure. The smallest unit of
this structure is called the primitive cell. A consequence of this periodicity is that the lattice
is invariant to translations by distances that are integer multiples of the lattice period. The
lattice symmetry operations referred to as primitive translations can be written as

Rn = njaj + ngas + Nnsas, (11)

where the n; are integers. The set of all R,, form the point lattice of the crystal. The number
of possible types of point lattices is limited; in three dimensions there are 14 different point
lattices. The crystal’s real lattice is obtained from its point lattice by substituting each point
of the point lattice by a basis, i.e. the arrangement of the atoms in the Wigner-Seitz cell. Real
lattices whose basis does not restrict the symmetry of the Wigner-Seitz cell are called Bravais
lattices. The three types of crystals that are most important for semiconductors are shown in
Figure 1.1. The zinc-blende crystal has a face-centered cubic point lattice and a two atomic
basis. In the case of group IV semiconductors such as silicon, germanium, and carbon, the
two atoms are identical (strictly speaking, these semiconductors possess a diamond crystal),
whereas in the case of III-V semiconductors such as GaAs, InAs, InP, etc. the two atoms are
different. The wurtzite crystal has a hexagonal point lattice and a two atomic basis. Examples
of semiconductors with wurtzite crystal structures can be found among the nitrides such as
GaN, InN, AIN, etc.

The discrete translational invariance of crystalline semiconductors has an important conse-
quence on their electronic structure as it allows associating the electronic states with discrete
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diamond zinc-blende wurtzite

Figure 1.1: The three most common crystal structures for semiconductors: diamond (e.g. C,
Si, Ge), zinc-blende (e.g. GaAs, InAs, AlAs), and wurtzite (e.g. GaN, AIN).

bands, thereby forming the so called band structure of the semiconductor. This fact is inti-
mately linked to the Bloch theorem that we will therefore briefly summarize.
The electronic many-body Hamiltonian of a crystalline solid is given by

p? 1 e?
H= ! V;on 1 a 1.2
Z[2m+ <X):|+2Z47T|Xi—Xj| (1.2)
? i#£]
where 2"; is the kinetic energy of the ith electron, Vi, (x;) is the interaction of the ith electron

with the atomic cores, and the last term is the Coulomb interaction between the electrons.
Here we have already made the assumption that the atomic cores can be considered as fixed at
their equilibrium lattice sites. The Hamiltonian H therefore does not contain the interaction
of the electrons with the quantized lattice vibrations, the phonons. For the potential of the
atomic cores, translational invariance

V;on (X + R) = V;on (X) (13)

holds for all lattice vectors R. Despite neglecting the phonons, the many-body Hamiltonian
H is still too hard to be solved exactly. According to density functional theory it is however
possible, at least for the many-body ground state, to replace the Hamiltonian H by an effective
one-body Hamiltonian
2
Hy = 2=+ Vion (%) + V [n] (x) (14)

where the electron-electron interaction is replaced by an additional one-body potential V' [n] (x)
that is a functional of the ground state electron density of H;

n (X) = Z |wn (X)|27 len = nwn (15)

Here, 1), denotes the eigenfunctions of the one-body Hamiltonian H; and F, denotes the cor-
responding eigenenergies. For the ground state electron density, all eigenfunction with energies
smaller than the Fermi energy Er are fully occupied. We take into account V' [n] (x) in the con-
text of the local spin density approximation (LSDA) as is briefly summarized in Reference [6].
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It is possible to show that the additional one-body potential V' [n] (x) obeys the translational
symmetry of the lattice so that for all lattice vectors R a relation analogous to Eq. (1.3) holds

Vin](x+R)=V[n](x). (1.6)
For this reason, the eigenfunctions v,, (x) of the one-body Schrodinger equation

Hytp,, (x) = Enhy, (%) (1.7)

with eigenvalues E,, obey Bloch’s theorem: they are at the same time eigenfunctions 1, \ (x)
of the translational operator Tg with eigenvalues exp (ik - R)

Trtppy (%) = exp (ik - R) 4y, ) (x) (1.8)

for all lattice vectors R. As a consequence of Bloch’s theorem, the eigenfunctions v, (x) of
H; can be written as the product of a plane wave exp (ik - x) and a Bloch factor u, x (x)

Ve (x) = exp (ik - X) up x (X) . (1.9)

The 1), (x) are called Bloch functions. By inserting the Bloch functions into the one-body
Schrodinger equation, the following relation is obtained for the Bloch factors u, x (x)

En (&) unx (x) = H (K) tnx (%)

= P 00+ V ] (09| s (). (1.10)

For each integer band index n, the eigenenergies F,, (k) depend continuously on the vector k in
reciprocal space. This systematics of the electronic spectrum is called the band structure and a
characteristic of all crystalline solids. Special to semiconductors is the fact that in the ground
state each band is either fully occupied or fully empty. The highest, fully occupied band is
separated from the lowest, unoccupied band by an energy gap of the order of a few eV.

A large number of methods have been developed for the calculation of the band structure
of which we want to present in the following the k - p approximation, as this is the basis also
for the quantum mechanical treatment of the electronic structure of nanostructures within
nextnano-+-.

The k - p approximation

The k - p approximation exploits the fact that many properties of semiconductors depend only
on the position and shape of the minima and maxima k, of the conduction and valence bands
and a precise knowledge of the entire band structure is not needed. We therefore expand E,, (k)
around these extrema ko up to second order in |k — k| and rewrite the Hamiltonian H (k) as

follows:
2

h h ,
—(k — ko) - — (k —kq)”. 1.11
"k k0) bt o (ko) (1.11)
The Bloch factors u, k, (x) for k = ko obey

H (k) = H (ko) +

(k) uiy (9 = [P 60 v 0] (09t (0

= B, (Ko) tni, (X) (1.12)
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and form a complete set of orthonormal functions. This allows us to expand the Bloch factors
Unx (x) for arbitrary k in terms of the u, k, (X)

Ui (X) = Z o (K) Uy, (X) . (1.13)

v

By inserting this expansion into Eq. (1.10) we obtain an eigenvalue equation for the expansion
coefficients ¢, , (k)

E, (k) cn, (k) = Z H,, (k) cn e (k) (1.14)

and the Hamiltonian is represented by the following infinite dimensional matrix

2

H,, (k) = |E, (ko) + ;—m (k — kO)Q] S+ % (k — ko) - P, (1.15)

that couples all energy bands by means of the momentum matrix elements p,, between the
respective Bloch factors for k = kg

Pvy = <uu,ko‘ p |uu,ko> . (116}

For many properties of semiconductors only a small number of energy bands are important,
namely the valence and conduction bands in the immediate proximity of the Fermi energy.
Therefore, the next step is to use perturbation theory to obtain a finite dimensional Hamiltonian
matrix for those bands [7]. For this, we separate the bands into two groups A and B where
group A contains the few bands near the Fermi energy Fr and group B contains all remaining
bands. We assume that the non-diagonal coupling term

% (k — ko) - Puy (1.17)

is weak between bands from group A and group B and can be treated as a perturbation [8—
11]. The infinite dimensional Hamiltonian matrix H then becomes the finite dimensional % - p
Hamiltonian matrix

K2 h
le/{E (k) = |:El/ (kO) + % (k - kO)2 6l/u + E (k - kO) *Pup

Hyy (k) oy (k)
+7€ZB E, (ko) — E, (ko)’ (1.18)

where the indices v and p run only over the few bands in group A. The momentum matrix
elements p,, are customarily used as fitting parameters to match experimentally obtained
results. Furthermore, many of the momentum matrix elements vanish due to symmetry.

Depending on the set of bands in group A one obtains different k-p models for the conduction
and the valence bands. This also includes the effective mass approximation where only a
single band is taken into account. Common multi-band % - p models are the 6-band model
that includes only valence bands, and the 8-band and 14-band models that include valence as
well as conduction bands. In the following, we will present the details of the effective mass
approximation, the 6-band, and the 8-band model. For the 6-band and 8-band model we
restrict ourselves for the moment to the zinc-blende crystal structure and refer the reader to
Appendix C as concerning the case of the wurtzite crystal structure.
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GaAs Silicon

A
Ef- i N
/ \lh
SO
X T L X T L

Figure 1.2: The band structures of GaAs and silicon. For GaAs, the conduction band has
minima at the I'-point, the X-point and the L-point. For silicon, there are no minima at the
X-point, but along the connecting lines A between I' and X. In both materials, the heavy
hole (hh) and the light hole (1h) valence bands are degenerate. The degeneracy is lifted for the
split-off band (so) due to the spin orbit interaction.

Conduction and valence band models

The simplest model that can be derived from the k - p approximation is the so called effective
mass approximation (EMA). For the EMA only one band (v, = n) is taken into account in

group A. Thus Eq. (1.18) for the k- p Hamiltonian matrix is reduced to a simple scalar function
of k

G 12 [
HEMA () = E, (k —(k—ko)r+ = Y
(k) (0)+2m< 0) +m2;En(kO>_E'y<kO)
72 1
— En(k0)+7(k—k0)-m* (k — ko). (1.19)

The symmetric 3 x 3 matrix m* is called the effective mass tensor. The EMA often suffices
for the description of the conduction band. The conduction band has multiple local minima
at special points in the Brillouin zone. For zinc-blende, these are the I-point (kg = 0), the X-
point (ko = {100}), and the L-point (ko = {111} /+/3). The minima at the X-point are 3-fold,
the ones at the L-point are 4-fold degenerate, as each is shared by two neighboring Brillouin
zones. In silicon, there are no minima at the X-point but along A, which is the connecting line
between I' and X. These minima are therefore 6-fold degenerate. At the I'-point of the bulk
Brillouin zone m* is isotropic

m* = m*ls.3 (1.20)

due to symmetry reasons. The effective mass tensors at the X-point, the L-point and along A
are characterized by a longitudinal effective mass m; and a transversal effective mass m;

m* = (mf —m})kokg +mi s (1.21)

and describe ellipsoids of revolution with the axis of symmetry pointing in the direction of k.
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The valence bands are created by the p orbitals in most semiconductors and are therefore
threefold degenerate. For this reason, the k- p model for the valence bands needs to include at
least three bands in the orbital basis

1), |22) , |23) (1.22)

which for zinc-blende materials at the I'-point results in

h2
H?®33 (k) = B, + 2—k2 + NKkk” + (L — N) diag (k, k3, k3)
m
+M diag (k3 + k3, k7 + k3, kT + k3) . (1.23)

The parameters L, M, N are called the Dresselhaus parameters [9] and depend on the momen-
tum matrix elements p,,, as the effective mass tensor m* does. So far, we have neglected spin
effects. For an accurate description of the valence bands however, it is necessary to include the
spin-orbit coupling. By taking into account the spin-orbit coupling we have to add the term

h

to the one-body Hamiltonian given by Equation (1.4). Here o denotes the Pauli spin matrix
vector o = (O'l,O'Q,O'g)T. The solutions of Schrodinger’s equation are then two-component
spinors and an appropriate basis for the three valence bands including spin is given by

[22) [1) 5 |22) [1) 5 |ws) [T) 5 2a) (L) Jw2) (L), es) |1 - (1.25)

The k - p Hamiltonian then becomes a 6 x 6 matrix that can be expressed as follows:
sz,6><6 (k) — sz,3><3 (k) ® 1oy + Hgg’GXG (k) (1.26)

where Hgg’GXG (k) is the 6 x 6 matrix resulting from Hgo by employing the & - p approximation.
This gives rise to the following two contributions:

h
1
HSO = W (VV X p) - g, (127)
HZ = - vV xK) o (1.28)
SO ym2e2

Usually one makes the assumption that
150 < [ Hso]| - (1.29)

which renders HZ3%*® (k) to be independent of k. The Hamiltonian matrix HZ3%*® is then
given by

0 - 0 0 0 1
i 00 0 0 —i
AglO 0 0 -1 i 0
zb,6x6 __ 20
Hso " =310 0 -1 0 i o] (1.30)
0 0 —i —i 0 0
1 i 0 0 0 0
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where A is the spin-orbit splitting. The basis that diagonalizes Hég’ﬁw is used to classify the
valence bands into heavy hole, light hole, and split-off hole.

An even more accurate description is obtained when also the conduction band at the I'-point
is taken into account. As basis functions for the conduction band we choose

)1} 1s) 11) - (1.31)
The resulting 8-band k - p model is then described by the following 8 x 8 Hamiltonian matrix
sz (k) sz (k)
zb,8% 8 _ [ cv
H (k) - (H‘Z,E (k) sz,6><6 (k) (1'32)

with the 2 x 2 conduction band submatrix
h2S
H (k) = (Ec T o k2> ® 1ax2, (1.33)
m

and the coupling matrix between conduction and valence bands

Bliyks + i Pk,
H™ (k) = | Bkiks + iPky | ® 1oy, H™ (k) = H? (k)" | (1.34)
Bk ko + i Pk

The parameter B is non-zero only for crystals without inversion symmetry as is the case for the
III-V compounds. For group IV semiconductors such as silicon, B = 0 holds. The parameter
p

P is related to Kane’s momentum matrix element Fp according to Ep = 2my (5)2. For

B = P = 0 the parameter S~! would be equivalent to the effective mass of the conduction
band.

The Hamiltonian matrices for the corresponding multi-band k - p models for wurtzite are
given in Appendix C.

The envelope function approximation

Until now we have only considered perfectly periodic, infinite-size semiconductor crystals. How-
ever, realistic nanostructures not only have a very small finite size, but they may also contain
variations in material compositions and may be subjected to non-uniform external potentials
Vexs (X). As a consequence, the Hamiltonian describing these systems is not translation invariant
and neither Bloch’s theorem nor Eq. (1.9) is available.

By means of the envelope function approximation it is however possible to adopt most
of the presented theory also for nanostructures. We want to explain the envelope function
approximation for the example of a homogeneous semiconductor that is subject to an external
potential Viy (x). The electron wave functions 1 (x) are written as superpositions of Bloch
functions v,, ., (x)

Y (X) =D Fo (%) ¥, (%) (1.35)

where the expansion coefficients F,, (x) are denoted envelope functions and are assumed to
be slowly varying as compared to the lattice constant. The next step is to transform the
Hamiltonian H (kg) in Eq. (1.10) to reciprocal space. For this, we expand the envelope functions
as well as the external potential in terms of Fourier series:

F, (x) = Z Cnk exp (1kx) , (1.36)
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Viext ( Z V&t exp (ikx) . (1.37)
From the Schrodinger equation for H (k) including the external potential Ve (x)

(H (ko) + Vext (%)) ¥ (x) = EY (x) (1.38)

we therefore obtain the following system of equations for the envelope function expansion
coeflicients ¢,

h*k? hk - p,,
Ecyne = E E Cnk (|:En (kO) + Im :| 671 n(;k’k + Vk’ 5n’n + %51(’1{) : (139)
n k

In the real space representation, this system of equations yields a Schrodinger like eigenvalue
problem for the envelope functions

v’ hV - P
EFy (x) = Z ({E (ko) — =5~ }5,1,” P 4 Vi () 5n,n> F, (x)

— ZHEA (ko) F, (x). (1.40)

Thus the envelope function Hamiltonian H;Elf (k) in Eq. (1.40) is identical to the infinite di-
mensional Hamiltonian matrix H,, (k) in Eq. (1.15) if k — ko is replaced by —iV.

For HVEj (k) it is also possible to employ the k - p approximation. The envelope function
Hamiltonian for the conduction band in effective mass approximation is given by

w? 1
HEAEMA _ —3V~ (%) V + Ee + Vg (%) (1.41)

where the conduction band edge E. = E, (ko) is the energy of the conduction band at the
considered minimum k = ky. This expression may also be used for nanostructures with non-
constant material composition [12, 13]. In this case, the effective mass tensor m* as well as the
conduction band edge E. depend on the position, i.e. m* = m* (x) and E, = E. (x)

1

m* (x)

JJEAEMA _ _h_ZV' <

5 ) V + E (x) + Vext () . (1.42)

The same approach is also valid for the presented multi-band & - p Hamiltonians. In this case,
all the k - p parameters become position dependent quantities. At first, this leads to several
problems due to operator ordering issues. However, it has been shown that each of these
problems can be solved [14].

The model solid

At the interface of two semiconductors, the discontinuities in band edge energies are not well
defined a priori. This is because an absolute energy scale, on which to determine the ener-
gies of the band edges of the bulk semiconductors, is missing. Microscopically, the band edge
discontinuities are caused by electric dipole layers [15]. Dipole layers correspond to a discon-
tinuity in the electrostatic potential that in general is sought to be fully included in the band
edge energies of the bulk semiconductors. Van de Walle has proposed a theory that relates all
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band edge energies to the energy scale provided by a model solid consisting of neutral atoms
[16, 17]. This approach also yields the basis of the separation of the strain induced band shifts
between the valence and conduction bands. A different approach for setting up the reference
energy scale in terms of electronic states of the atomic cores is pursued in Reference [18]. For
our database, the parameters for the bulk band edge energies are mainly taken from this more
recent work.

1.2.2 Poisson equation

The Poisson equation for a semiconductor nanostructure with spatially varying dielectric con-
stant is given by

V-[e(x) Vo (x)] = —p(x) (1.43)

where ¢ (x) denotes the electrostatic potential, p (x) is the charge density, and € (x) in general
is the position dependent dielectric tensor. The charge density is composed of holes p(x),
electrons n (x), ionized donors Np (x), ionized acceptors N, (x), and fixed charges pg, (x) as
follows:

p(x)=ep(x) —n(x)+ N (x) = Ny (%) + pge (x)] - (1.44)

Contributions to the fixed charges pg, (x) are polarization charges p,, (x) due to piezo- and
pyroelectric polarizations as well as fixed surface and volume charges pgt /vor (X)

Paix (X) = Ppor (X) + Psurt /vol (x). (1.45)

The determination of the polarization charges is discussed in Section 1.2.4.

The unique solution of the Poisson equation requires specifying boundary conditions. Bound-
ary conditions have to be specified at the boundaries of the nanostructure. Furthermore, bound-
ary conditions are used at the interfaces to contacts. Contacts are part of the nanostructure,
but inside of contacts the Poisson equation is not solved. Instead, assumptions on the electro-
static potential within the contacts are made that are then incorporated in terms of appropriate
boundary conditions.

From a mathematical point of view, the two most important types of boundary conditions
are the Dirichlet and the von Neumann boundary conditions. For a given region {2 with
boundary 052, these are characterized by

¢ (X)|xeon = f (%) (Dirichlet boundary condition) (1.46)

and
On® (X)| o0 = 9 (%) (von Neumann boundary condition), (1.47)

where n denotes the normal to 9 and f (x) and g (x) are given functions on the boundary of
(). Besides those, periodic boundary conditions are of interest for simulations of periodically
repeated structures. The application of the boundary conditions for the electrostatic potential
will be discussed in the next section in combination with the boundary conditions for the quasi
Fermi levels. In the remaining part of this section, we will go into the details on how to
determine the hole and electron charge densities as well as that of the ionized impurities.

For the determination of the charge carrier densities we use two different approaches. In
regions, where quantum mechanical effects are dominant, the charge carrier densities are calcu-
lated on the basis of the envelope wave functions obtained from the single-band effective mass
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or multi-band k - p equations. If quantum mechanical effects do not play a role, the charge
carrier densities can be calculated classically by means of the Thomas-Fermi approximation.

To calculate the charge carrier densities from the envelope wave functions, the Fermi-Dirac
statistics of either holes (I = v) or electrons (I = c¢) are used to occupy the states according to
their corresponding probability densities

Pz,; Z ’ ‘ l=v,c. (1.48)

For | = v (I = ¢) the index i runs over all included valence bands (conduction bands). The
index j enumerates the states in band ¢ and the summation runs over all components of the
envelope function Ffj (x). For quantization in all three spatial dimensions, this immediately
leads to the following expressions for the hole density p (x) and the electron density n (x)

)= 6 ) e, () f([E; = Erp ()] /KT, (1.49)

= 3 0 Sk ) ([ + B (0] /A7), (150

where ¢¢ and g’ account for possible spin and valley degeneracies. f (F) is the Fermi distribution
function. Note that strictly speaking these two expressions are correct only in equilibrium for
Ern(x) = Er,p (x) = Ep, where Er denotes the Fermi energy. The use of separate, position
dependent quasi Fermi levels Er;, (x) and Er,, (x) for holes and electrons to describe also non-
equilibrium situations is justified only if Fr, (x) and Er, (x) vary slowly as compared to the
envelope wave functions [19].

For structures with translational invariance in one or two of the three spatial dimensions,
it is possible to separate the free motion of the charge carriers in the directions of translational
invariance. The free motion of the charge carriers in these directions is characterized by the k|
lattice wave vector. The correct density of the charge carriers is then obtained by integrating
over k||. Further details on this integration are presented in Chapter 4. Here, we want to restrict
ourselves to the case of the single-band effective mass approximation with position independent
effective mass tensor. In this case, the integration of the k| lattice wave vector can be done
analytically resulting in the following expressions for the charge densities of holes and electrons

, (3—d)/2
(Mg n KT ;
p(X) = Z gi <q2dﬂ_—77ihg) vag f(l d)/2 ([ERP (X) - Ev,j] /kT) ) (151>
1i€VB
o i qdos ekT e i
n(x)=> g — chj x) Fa—ay2 ([~ Ern (x) + EL] /KT),  (1.52)
1€CB

where the number of quantized spatial dimensions is given by d. The function F,, (F) denotes
the Fermi-Dirac integral of order n. Integrating out the free motion of the carriers in the
direction of k| results in the equivalent densities of states of a two-dimensional (for d = 1) or
one-dimensional (for d = 2) free electron gas that depend on the density-of-states mass

mf]dos,)\ = (det m;i)l/d A= h7 €. (153)
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Here, m}' (x) denotes the 2 X 2 (1 x 1) submatrix of the effective mass tensor m}’ (x) in the
dlrectlon of kj.

In the context of the Thomas-Fermi approximation the following expressions for the charge
carrier densities can be derived: For holes one finds

=Y NUT) Fipe ([By (x) — ¢ (x) — Epy, (x)] /ET) (1.54)

1€VB

the respective formula for electrons is given by

Z N (T) Fupa ([~ Ee (x) + e¢ (x) + Bpn (x)] /ET) . (1.55)

1€CB

The summations run over the included valence and conduction bands, respectively. Here, E! (x)
and E’ (x) denote the position dependent band edges, N (T) and N!(T) are the equivalent
densities of states at the valence and conduction band edges. They are given by

, 3/2
mélos A (X) kKT .
—_— [ =V, C and correspondingly A\ = h, e, (1.56)

where mj;, (x) and mj, , (x) are the density-of-states masses for electrons and holes in the
various valence and Conduction bands These density-of-states masses can be calculated from
the effective mass tensors m;* and m}’ according to

Mijgs (x) = (detmyl (x))* A =he. (1.57)

Likewise, expressions for the densities of ionized impurities can be derived in the context of
the Thomas-Fermi approximation. For the ionized acceptors the resulting formula is given by

_ B Ni (x)
NoG)= D e (C ey ) = EL I /D) (1.58)

i€ Acceptors

where ‘
Ej (x) = By (%) — e (X) = Ej jon- (1.59)

The summation in Eq. (1.58) runs over all different acceptor species. Each type of acceptor
is characterized by its ionization energy E};vion, degeneracy ¢, and in particular its spatial
distribution N} (x). Similarly, one finds for the ionized donors

. N ()
NEO) = D o (Bem () — B T /RT) (1.60)

i€Donors

where ‘
Ep (x) = Ee (x) — e (X) — Ep jon- (1.61)

In Eq. (1.60), the summation runs over all different donor species. As for the acceptors, each
donor is characterized by its ionization energy E]ilion, degeneracy ¢4, and its spatial distribution
N§ (x). The impurity degeneracies are normally gy = 4 for acceptors and gp = 2 for donors
[20].
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1.2.3 Current equation

If the contacts of a nanostructure are biased by different voltages the system is driven out of
equilibrium and electric currents may flow between the contacts. This situation is characterized
by the fact that the specification of a single Fermi energy for electrons and holes that is constant
throughout the device is not sufficient to describe the charge distribution. Moreover, the
charge distribution in general does not follow the Fermi-Dirac statistics. The non-equilibrium
Green’s function (NEGF) formalism [21] allows for a fully quantum mechanical treatment of
non-equilibrium situations including scattering, but is computationally still to demanding for
calculations in two or three spatial dimensions.

For nextnano++ we therefore employ the following two approaches. For situations close
to equilibrium and in the absence of scattering we apply a recently developed, very efficient
method for the calculation of the ballistic quantum transport [22]. This method is discussed in
detail in Chapter 5. The second approach has been introduced by Hackenbuchner in Ref. [19]
and combines the classical drift diffusion method with a quantum mechanical approach for the
determination of the charge carrier density. This method is presented briefly in the following.

The classical drift diffusion method can be derived from the Boltzmann equation whose
zeroth and first moments yield the continuity equation and an expression for the current density.
Taking into account holes and electrons, the continuity equations are given by

V() = R(x). (1.62)

=V jn(x) = R(x), (1.63)

where j, (x) and j, (x) are the current densities for holes and electrons, respectively. The two
equations are coupled in terms of generation and recombination processes that are both included
in R(x). Depending on the sign of R (x) either generation (R (x) < 0) or recombination
(R(x) > 0) is dominant. The current densities that result from the first moment of the
Boltzmann equation are given by

Jp (%) =, (x) p (%) VEg, (%), (1.64)

Jn () = =, (X) 1 (%) V B (%), (1.65)

where p, (%), p,, (x) are the mobilities and Er j, (x), EF , (x) are the quasi Fermi levels for holes
and electrons, respectively. The additional assumption is that the charge carriers are locally
close to thermodynamic equilibrium and can be described by the Fermi-Dirac statistics. Models
for the recombination R (x) and mobility s, (x), u, (x) are given in Appendix D. In the classi-
cal drift diffusion approach, the charge carrier densities p (x) and n (x) are calculated according
to Eq. (1.54) and Equation (1.55). In the quantum drift diffusion method by Hackenbuchner,
Eq. (1.49) and Eq. (1.50) are used. Together with the Poisson equation and the Schrodinger
equation this method allows one to determine a charge self-consistent solution for the electro-
static potential and the quasi Fermi levels. The current densities can then be calculated from
the quasi Fermi levels and the charge carrier densities are calculated according to Eq. (1.64)
and Equation (1.65).

To determine the quasi Fermi levels the following two linear partial differential equations
have to be solved

—V -, (x)p(x) VEr, (x) = R(x), (1.66)
V-, (x)n(x) VEp, (x) = R(x). (1.67)
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The numerical solution of these equations is plagued by the fact that the charge carrier densities
may vary by several orders of magnitude, which renders the resulting linear system of equations
to be conditioned in an extremely poor way.

As for the Poisson equation, the unique solution of Eq. (1.66) and Eq. (1.67) requires
specifying boundary conditions. Boundary conditions have to be specified at the boundaries of
the nanostructure as well as at the interfaces to contacts. Contacts are part of the nanostructure,
but inside of contacts the current equations are not solved. Instead, assumptions on the quasi
Fermi levels within the contacts are made that are then incorporated in terms of appropriate
boundary conditions.

From a physical point of view two types of contacts have to be distinguished, namely Ohmic
contacts and Schottky contacts:

1. An Ohmic contact is characterized by the fact that the space charge region at the metal-
semiconductor interface is so small that charge carriers can easily tunnel through the
corresponding energy barrier. Close to the contact the electrostatic potential is deter-
mined by the requirement of local charge neutrality

2. At a Schottky contact the conduction band edge is fixed to a given value above the Fermi
level due to surface states. The energy difference between the conduction band edge and
the Fermi level is denoted as Schottky barrier and depends on the ionization energy of
the surface states. The charge of the occupied surface states results in a non-vanishing
electric field at the contact.

In the following, we explain how these contacts are modeled in terms of boundary conditions:

1. Ohmic contact: The bias voltage Vi,.s that is applied to an Ohmic contact C' fixes the quasi
Fermi levels within the contact. For the quasi Fermi level at the metal-semiconductor
interface 0C' we therefore choose Dirichlet boundary conditions

Eva (X>|x680 = EFJI (X>|XEBC = _e‘/ioia& (168)
For the electrostatic potential we employ von Neumann boundary conditions
On® (X)|xcoc =0 (1.69)

that correspond to a vanishing electric field.

2. Schottky contacts: As for the Ohmic contact, the applied bias voltage V};,s fixes the quasi
Fermi levels within the contacts and we therefore use Dirichlet boundary conditions for
the quasi Fermi levels at the interface

EF,p (X)|x€80 = EF,n (X)|x€30 = _eviaias- (170)

The conduction band edge FE. is fixed above the Fermi energy by the Schottky barrier
—e@g, which results in a Dirichlet boundary condition for the electrostatic potential at
the interface 0C' that is given by

1
¢ (X)|xeac = gEc + Vbias + ¢5- (1.71)

In addition, we also allow specifying Dirichlet boundary conditions exclusively for the quasi
Fermi levels by means of so called Fermi contacts.
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1.2.4 Strain equation
Elasticity theory

If semiconductor materials with different lattice constants are epitaxially grown on top of each
other, lattice mismatch results in a displacement of the crystal’s atoms from their rest positions
producing strain. We use a continuum model on the basis of elasticity theory to calculate these
strain fields. This is based on the Euler-Cauchy stress principle and Cauchy’s fundamental
postulate [23]. In differential form, the resulting equation for the Cauchy stress tensor o;; is
given by

8]'0”- = _fj7 Z,j = 1,...,3 (172)
where f = (fi, fa, f3) is an external volume force (for example gravity). We make the approxi-

mation f = 0, i.e. we assume that all external volume forces vanish. For small strain, the stress
tensor is related linearly to the strain tensor by means of Hooke’s law

Uz‘j = Eijklskl, (173)

where Fjj;,; denotes the fourth rank elasticity tensor. The strain tensor is related to the dis-
placement vector u = (uq, ug, u3) according to

1
Ekl = 5 (8luk + 8kul) . (174)

The displacement vector u characterizes the displacement of a particle from its rest position.
From Eq. (1.74) it follows immediately that the strain tensor is symmetric. Therefore, only
six components of the strain tensor are independent. This allows us to introduce the following
notation due to Voigt

1 €11 01 011

E2 €22 02 022

€3 . €33 03 . 033 1.75
= 7 = : (1.75)

€4 2623 (o) 0923

€5 2¢e13 05 013

3] 2e12 O¢ 012

In the Voigt notation, Hooke’s law can be written as a simple matrix-vector multiplication as
follows:

g; = Eijgj- (176)
The elasticity tensors for zinc-blende and wurtzite crystal structure in Voigt notation are given
by

C11 Ci12 Ci12
Ci2 C11 Ci12

B, — Ci12 Ci2 C11 (1'77)
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and
€11 Ci12 C13
Ci2 C11 C13
E,, = €13 C13 €33 ' (1.78)
Cq4
Ca4
Ce6

Note that the elasticity tensors are characterized by only a small number of elasticity constants
due to the symmetry of the zinc-blende and wurtzite crystals.

Strain has two major effects that will be discussed in the following. First, strain is re-
sponsible for the piezoelectric polarization charges that contribute to the charge density in the
Poisson equation and therefore change the electrostatic potential. Second, strain induces shifts
in the band edges via the deformation potentials and therefore influences directly the electronic
structure.

Polarization charges

In IIT-V semiconductors strain leads to a displacement of the centers of positive and negative
charges within a unit cell and therefore to the formation of microscopic electric dipoles. At
surfaces, interfaces, or in inhomogeneous strain fields, these microscopic dipoles are not com-
pensated and therefore yield macroscopic, so called piezoelectric polarization charges. Semicon-
ductors in wurtzite crystal structure show an additional permanent polarization independent
of strain in the direction of the c-axis. This also leads to macroscopic polarization charges at
surfaces or interfaces that are called pyroelectric charges.
The piezoelectric polarization PP*#° is proportional to the strain tensor
PPieZO = €ijkEjk- (].79)

2

The proportionality constants form a third rank tensor e;;, that in general has 27 entries. In
the crystal coordinate system the number of constants can be drastically reduced. In Voigt
notation, the only non-zero component of e;j, for zinc-blende crystal structure is e;4 and the
relation between the piezoelectric polarization vector and the strain tensor is given by

) 2623 (X)
Plz)kl)ezo (X) = €14 (X) 2613 (X) . (180)
2612 (X)

Similarly, for wurtzite crystal structure, there are only three non-zero components, namely e;s,
e31, and ez3. For the relation between the piezoelectric polarization vector and the strain tensor
the following equation holds:

. 2615 (X) €13 (X)
P\];l;}zo (X) = 2615 (X) £12 (X) . (181)
e31 (x) e11 (X) + €31 (X) €92 (X) + €33 (X) €33 (%)

To obtain the full polarization vector for wurtzite crystal structure the contribution

0
Py x) =1 0 (1.82)
p(x)
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of the pyroelectric polarization has to be added. Here p (x) is the material dependent pyroelec-
tric constant.

The polarization charges are now obtained by forming the divergence of the polarization
vector

Ppol (X) = —-V. de (X) ) (183)
PP (x) for zinc-blende
pol zb
PP (x) { Priezo (x) + PP (x)  for wurtzite ' (1.84)

No polarization charges are present in regions where PP°! (x) is constant. However at interfaces,
where the piezoelectric or pyroelectric constants change abruptly from one material to another
material, polarization charges may occur. The same is true if the piezoelectric constants are
position independent, but the strain fields are inhomogeneous.

Strain induced shift of the band edges

Besides polarization charges, strain has a second, more direct effect on the electronic structure in
semiconductor nanostructures. Strain causes a shift of the band edges of conduction bands and
valence bands relative to each other by material dependent amounts. This can be described
by deformation potentials. For the conduction band at the I'-point strain results in a shift
proportional to the trace of the strain tensor:

E' - El +a.Tre. (1.85)

C

The proportionality constant is the absolute deformation potential a. for the conduction band.
Note that the trace of the strain tensor corresponds to the change in volume. For the conduction
band valleys at the X-point, the L-point, and along A the effect of strain also depends on the
particular position kg of the valley [24]

E (120) Ny (120) + 5 Tre+ = (120 : 6120) . i=X,LA (1.86)

One part of the shift is again due to the change in volume and therefore proportional to the trace
of the strain tensor. The proportionality constant = is again denoted as absolute deformation
potential and may differ for i = X, L, A. The second part also includes the off-diagonal elements
of the strain tensor that describe sheer strain. The kg dependency of this term may lead to a
splitting of the degenerate valleys of each of the Brillouin zone points X, L, or along A. The
proportionality constant Z¢ is denoted as uniaxial deformation potential.

In the context of the k- p model, strain leads to an additional contribution to the k - p
Hamiltonian matrix for the valence bands

H3><3 (k) — H3><3 (k) + S (5) s (187)
that for zinc-blende is given by
SZb (6) = ne + (l — n) diag (611, €99, 633) + mdiag (522 + £€33,€11 + €33,€11 + 622) s (188)

where any k depending terms have been neglected [19]. The parameters m, n, and [ are related
to the absolute deformation potential for the valence band a, and to the sheer deformation
potentials b and d as follows:

[ =ay+ 2b, (1.89)



18 CHAPTER 1. SIMULATION OF SEMICONDUCTOR QUANTUM INFORMATION. ..

m=ay, — b, (1.90)
n = /3d. (1.91)

For wurtzite, the contribution of strain to the k - p Hamiltonian matrix is given in Appendix C.
To calculate the energies of the valence band edges of heavy holes, light holes and split-off
holes, the following 6 x 6 k - p Hamiltonian matrix

H?0%6 (k) = [H™33 (k) + 5% (¢)] © Loxo + Hip®™ (1.92)

has to be diagonalized for k = 0. Besides a shift of the valence band edges, this also results

in a mixture of the heavy hole, light hole, and split-off hole states that are the eigenvectors of
H§%6X6.

1.3 Summary

In this chapter, we have given an overview on the physical background for the simulation of
semiconductor nanostructures for equilibrium as well as non-equilibrium situations. We have
illustrated the band structure of bulk semiconductors and we have presented the k- p model in
combination with the envelope function approximation as a method for the calculation of the
electronic structure of semiconductor nanostructures. Here we take into account holes in the
heavy hole, light hole, and split-off valence bands and electrons in the conduction band valleys
at the I"-point, the X- and L-points and along A. A non-vanishing distribution of space charges
occurs as a consequence of the ionization of impurity atoms, polarization charges, fixed charges
at interfaces, or as charge carriers in terms of holes and electrons. These charges are the source
of the built-in electrostatic potential that has an important influence on the electronic struc-
ture. The application of bias voltages to the contacts of a nanostructure drives the system out
of thermodynamic equilibrium and causes electric currents to flow. In the context of the drift
diffusion model, this is described by position dependent quasi Fermi levels for holes and elec-
trons. In epitaxially grown nanostructures, lattice mismatch between different semiconductor
materials results in non-vanishing strain fields that influence the electronic structure in terms
of deformation potentials and piezoelectric charges.



Chapter 2

Numerical techniques

2.1 Introduction

The equations that need to be solved in nextnano++ are sets of coupled partial differential
equations (PDEs) in position space. This immediately necessitates their discretization on a
grid. In order to achieve a highly efficient implementation, non-uniform tensor product grids
are used. The mapping of the PDEs onto the grid is achieved using the box integration finite
differences scheme (also termed box discretization in the following), since this discretization
scheme is flux conserving in the presence of material discontinuities as they naturally occur in
the simulation of heterostructures.

As a result of the discretization procedure, every differential operator in the PDEs becomes
a sparse N x N matrix, where N is the number of nodes in the grid. For three spatial dimensions
N is easily of the order of 10° (this corresponds to only 100 grid points in each direction). Here
we see immediately that three-dimensional simulations require extremely large matrices that
cannot be easily stored and processed, unless one explicitly exploits its sparsity structure with
its many vanishing entries.

After discretization, every PDE that is a boundary value problem (such as the Poisson
equation, the strain equation, and the current equation) becomes a large system of linear or
non-linear equations (N equations and unknowns). The Schrédinger equation as an operator
eigenvalue problem becomes a similarly large matrix eigenvalue problem with discretized wave
functions as eigenvectors. Due to the sparsity of the matrices, these large matrix problems can
be efficiently solved using iterative solvers such as the conjugate gradient method or Arnoldi
iterations. An in-depth presentation of the subject of iterative methods for solving linear
systems can be found in Reference [25]. Detailed information on a large number of methods
for the iterative solution of large matrix eigenvalue problems is given in Reference [26]. Here
we want to give a short overview on each of the methods employed within nextnano++ to
illustrate their application therein.

To deal with non-linearities as in the Poisson equation, standard algorithms such as the
Newton method with line search are employed. Elaborate iteration schemes as the predictor-
corrector approach [27] are used for the coupled Schrédinger and Poisson equations. The cou-
pled Schrodinger, current, and Poisson equations are solved using an underrelaxation approach
for the quasi Fermi levels. These methods and their application within nextnano++ are also
discussed in the following.

19
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Figure 2.1: For box integration each grid node z;; is surrounded by a rectangular control volume
Vij (gray). Material properties are assumed to be constant in the four quadrants Q;’;‘ of each
grid node x;;.

2.2 Box discretization

Box discretization has the advantage of being flux conserving also in the presence of material
discontinuities as they naturally occur in the simulation of nanostructures. For box discretiza-
tion, we cover the simulation domain with N non-overlapping rectangular boxes each belonging
to one of the grid nodes. We then integrate our differential equations over each box volume
to obtain an integral equation that is then discretized using the finite differences scheme. We
illustrate this approach here by means of the Poisson equation in two spatial dimensions with
a scalar dielectric constant. All the details concerning the application of box discretization
within nextnano++ can be found in Reference [14].
The Poisson equation is given by

V.e(x)Vo(x)=—-p(x) (2.1)
and we want to find an approximate solution for the electrostatic potential ¢ at the grid nodes
x;; = (z}, x3), where x}, 22 are the ith and jth elements of the ordered sets {z},2},... 2}, }
and {22, 23, ..., 2%, }, respectively. As shown in Fig. 2.1, for each grid node x;; we introduce a
surrounding box

Vij = [3_71‘17j11+1} X [f?7f?+1] (2.2)
where ) )
T = B (riy+ai), = B (251 +23) - (2:3)

The surrounding box V;; is also termed the control volume. We further define grid spacings h}
and h? between neighboring nodes

1 _ 1 1 2 _ 2 2
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Further, we introduce quadrants

ZV = [gjil—l-i-;;?'ipzl—&-u} X [aj?—l—‘rV?’I?—&-y] ’ w, v = 07 L. (25)

Each of these quadrants is assumed to be filled by a constant material and accordingly, material
parameters such as the dielectric constant ¢ (x) are assumed to be the same for each x € Q.
To derive now a discretization for Eq. (2.1) we proceed as follows: For each grid node we
integrate Eq. (2.1) over the control volume

/ d>xV e (x) Vo (x) = —/ d*xp (x). (2.6)
Vij Vij
The left hand side of Eq. (2.6) is cast into a surface integral by means of Gauss’s theorem
/ PxV - = (x) Vo (x) = / dsn - & (x) Vb (x) (2.7)
Vij Vi

where n denotes the normal to the boundary 0V;; of the control volume. This boundary is
given by

vy = |J s, (2.8)
n,v=0,1
where for v =0, 1
Sy = [z @] < {7} (2.9)
Sy ={zin x5 75] - (2.10)

By means of the line segments S} the right hand side of Eq. (2.7) now reads

/W__dsn.s(x)W(x)— > (_1)u+1/ A2 € (%) 9,10 (x) - (2.11)

w,v=0,1

We only consider the case p = 0, the calculations for ;= 1 can be carried out in an analogous
way

Z (=1 /OV dr; e (x) Oa0 (x) = Z (—1)"“/ deye (21,75,,) a2¢(5617562)’;p2=z§+y-

v=0,1 S5 v=0,1 Sy
(2.12)

We now use finite differences to approximate the derivatives at the center of the segments Sf“j”

06 (11,0 e (1)1 DT i) 0 (@,2)

! 2
Jtv hg+y

(2.13)

The remaining integral can then be easily evaluated taking into account that e (x) is constant
within each quadrant Q)

/Sly dx1€ (33'17 ]+u - Z hz+a z+o‘7 j+y) ) (2.14)

UOl
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Thus we obtain for the left hand side of Eq. (2.12)

S (-1 / day £ (%) Dah (%) (2.15)

v=0,1 Sy
1 _1 _2 h’zlJra' =1 2 =1 2
~ 5 Z 5(%+m%’+u) nZ, ¢ ($z’v9"’j—1+2u) —¢(%%)}- (2.16)
o,v=0,1 JTv

Now, forming the sum for ¢ = 0 and p = 1 yields the following result for the discretization of
the left hand side of Eq. (2.6)

/ d>xV - (x) Vo (x) (2.17)
Vij
1 1 =2 hivo 12 12
~ 3 > e (The Th0) 2, 6 (77,2 142)) — @ (70, 25)] (2.18)
o,v=0,1 JTv
h3 iy 1 2 1,2
+h1 [‘Z’ (‘ri71+207 xj) —¢ (551'7333-)] } : (2.19)
i+o

We also want to spend a few words on the right hand side of Equation (2.6). Here, the
problem is that the discretized charge density p (x) is composed of two components

P (X) = Pauad (X) + Pgria (X) (2.20)

where pgu,q (X) is defined on the quadrants @} and has a constant value within each of the
quadrants, whereas pg,;q (x) is defined on the grid nodes only. The origin of p,,q (x) is any kind
of material property that leads to fixed charges as for example doping, pyro- or piezoelectricity,
or surface charges. In contrast, the origin of py,q (%) is the free charge carrier density due to
electrons and holes. These two components have to be treated differently in evaluating the
right hand side of Eq. (2.6) as follows

1 _ _
_/‘; dQXp (X) = _Z Z hzl—s—ah?—&—upquad (xil+07 JT?+V) - |V;J| pgrid (Xij) : (221)

o,v=0,1

where |V;;| denotes the volume of the surrounding box V;;.

2.3 Iterative solvers

The two basic numerical problems that have to be solved by nextnano++ are linear systems
of equations
Ax=Db (2.22)

and large matrix eigenvalue problems
Ax = Ax, (2.23)

where A is a non-singular N x N matrix and b is a given N-vector. The matrices that arise
in nextnano++ from the discretization of the partial differential equations are sparse, having
only a few non-zeros per row. In contrast to the well-known Gaussian elimination method for
solving linear systems of equations, this sparseness can be fully exploited by solvers based on
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matrix-vector multiplications. If a matrix has only a few non-zero elements per row, the number
of operations required to compute the product of that matrix with a given vector is just a few
N instead of 2)N? operations required for a general dense matrix-vector multiplication.

Solvers based on matrix-vector multiplications are denoted as iterative solvers. If Ax = b
can be solved by a moderate number of matrix-vector multiplications and little additional work,
this iterative procedure may far outperform Gaussian elimination in terms of both work and
storage. Iterative solvers are known not only for the solution of linear systems of equations,
but also for large matrix eigenvalue problems.

The iterative solvers used in nextnano++ for linear systems of equations as well as for
eigenvalue problems are so called Krylov subspace methods. The basic idea is to construct the
Krylov subspace

K =span{b, Ab, ..., A" 'b} (2.24)

starting here from the only vector associated with the problem, i.e. the right hand side of
Equation (2.22). One then tries to find a good approximation for x in K. This immediately
raises the following questions: How good is the best approximate solution that is contained in
K? And how can an optimal approximation from K be computed with a moderate amount of
work and storage? The answers to these questions lead to a multitude of different methods of
which we want to present in the following those employed within nextnano-++-.

2.4 Solving linear systems of equations

In the following we will shortly discuss the three methods that are used within nextnano++ for
solving linear systems of equations. These methods are the conjugate gradient method (CG)
[28], the composite step conjugate gradient method (CSCG), and the biconjugate gradient
method (BiCG) [29]. The common feature of these methods is that they are all based on the
Krylov subspace approximation. We do not use these methods in their original form but employ
preconditioners to help in accelerating the convergence.

The conjugate gradient method (CG)

CG is the method of choice for Hermitian positive definite problems. These arise typically when
discretizing the linear Poisson equation, the current equation, and the strain equation. In these
cases the resulting matrix is real valued and therefore even symmetric. For the strain equation
this is true only if non-periodic boundary conditions are applied. For periodic boundary condi-
tions, discretization yields an unsymmetric matrix and CG cannot be used. In this case BiCG
is our method of choice.

It turns out that CG is often also good for indefinite problems. As will be discussed in
the section on eigenvalue problems, these indefinite matrices arise when discretizing the 8-band
k- p equation. There, CG is used for the shift-invert spectral transformation that allows one to
calculate inner eigenvectors using the standard Arnoldi iteration. Because CG is so widely used
we want to provide a description of this algorithm here: Given an initial guess xq, compute
ro =b — Axg and set pg =rg. For k=1,2,...

1. Compute Apg_1.

2. Set xp = X1 + ap_1Px—1, Where ap_; =1} ‘rkfl/ (pkfl : Apkzq)-
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3. Compute rp =rp_1 — arp_1Apr_1.

4. Set py =1y + br_1Pr_1, where by_; =1y - ri/ (rp_1 - T 1).

The composite step conjugate gradient method (CSCGQG)

In contrast to CG, CSCG has been explicitly developed also to solve Hermitian indefinite
problems. It is our method of choice if CG fails for the shift-invert spectral transformation.
CSCG can also be used for the Poisson equation, the current equation, and the strain equation
(only non-periodic boundary conditions), but CSCG is slower than CG by approximately a
factor of 2. The composite step conjugate gradient method is similar to the standard conjugate
gradient method, except that it occasionally proceeds from the iterate for step k£ to the iterate
for step k+2. Such composite steps are taken to improve the stability of the recurrence relations
and smooth the behavior of the residual norm. Details of composite step methods are presented
in Reference [30].

The biconjugate gradient method (BiCG)

BiCG has to be used for the strain equation if periodic boundary conditions are applied. In
this case, discretization yields an unsymmetric matrix. In contrast to CG and CSCG, BiCG
can also deal with non-Hermitian matrices.

Preconditioners

To help in accelerating the convergence, we do not use the presented methods in their original
form but employ preconditioners. Generally speaking, a preconditioner for solving a linear
system of equations is an appropriately chosen matrix M. The linear system of equations
Ax = b is multiplied with the inverse M ! from the left and instead of Ax = b one effectively
solves the modified problem

M 'Ax=M"'b (2.25)
with a hopefully better Krylov subspace by generating approximate solutions x,Xs, ... satis-
fying

xi. € span { M~"b, (M~1A) M'b, ..., (M 4)" M b}, (2.26)

At each step of the preconditioned algorithm, it is necessary to compute the product M 1
with a vector, or equivalently, to solve a linear system with coefficient matrix M. Therefore, M
should be chosen so that such linear systems are much easier to solve than the original problem.

For nextnano++ we use three types of preconditioners: the incomplete Cholesky [31], the
Dupont-Kendall-Rachford [32], and a diagonal preconditioner. The Dupont-Kendall-Rachford
preconditioner is used for the Poisson equation and for the current equation. The incomplete
Cholesky decomposition is used for the strain equation with non-periodic boundary conditions.
In conjunction with BiCG, we use the diagonal preconditioner for the strain equation with
periodic boundary conditions. For the shift-invert spectral transformation we use either the
incomplete Cholesky or the Dupont-Kendall-Rachford preconditioner.

Of the presented methods, diagonal preconditioning is the simplest approach. Here, one
sets M = diag (A). Thus, the determination of M~! is straightforward.
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The incomplete Cholesky preconditioner is based on the Cholesky factorization A = LL?
that can be performed for any Hermitian, positive definite matrix A, where L is a lower triangu-
lar matrix. However, if A is a sparse matrix, then the lower triangular factor L is usually much
less sparse than A and the entire band "fills in" during Gaussian elimination. By restricting the
lower triangular matrix L to have the sparsity pattern of the lower triangular of A, one might
obtain an approximate factorization of A. The nonzeros of L are then chosen so that the prod-
uct LL matches the non-zero entries of A, but of course, LL* does not match A everywhere.
An approximate factorization of this form is called incomplete Cholesky decomposition. The
matrix M = LL" can then be used as a preconditioner. The linear system Mz = r is solved in
two steps: first one solves the lower triangular system Ly = r, then the upper triangular system
L7z = y. For symmetric A with specific sparsity pattern (as it is the case for the Poisson, the
current, and the strain equation), the incomplete Cholesky decomposition can also be written
in the form LDL", where D is a diagonal matrix. The determination of L and D is discussed
in detail in Reference [25].

The Dupont-Kendall-Rachford preconditioner is a modification of the incomplete Cholesky
preconditioner and also fill-in free. The preconditioner matrix M is also given by a product of
the form LDLT, with a lower triangular matrix L and a diagonal matrix D. For the Dupont-
Kendall-Rachford method, the matrices L and D depend on a parameter 1 (termed DKR
value). For n = 0 the Dupont-Kendall-Rachford preconditioner is equivalent to the incomplete
Cholesky preconditioner.

2.5 Solving large matrix eigenvalue problems

Besides solving large systems of linear equations, the second main task in nextnano-++ is the
determination of eigenvectors and eigenvalues of large matrix eigenvalue problems. With the
exception of one-dimensional systems, storage and time limits the determination of eigenvectors
and eigenvalues to only a few as compared to the total number N. In most cases, however, we
are interested only in a few eigenvectors and eigenvalues close to the Fermi energy so that this
restriction poses no actual problem.

In nextnano++, two types of eigenvalue problems have to be solved. These are positive
definite eigenvalue problems and indefinite eigenvalue problems. Positive definite eigenvalue
problems arise from the single-band Schrédinger equation and from the 6-band & - p equation.
An indefinite eigenvalue problem results from the 8-band k - p equation. Different methods
have to be used to determine the desired eigenvectors and eigenvalues in these two cases.
The reason for this is not a numerical one, as one could argue that by an appropriate shift
an indefinite matrix eigenvalue problem should always become a definite matrix eigenvalue
problem. Instead, the reason is a physical one: For the positive definite eigenvalue problems,
we are interested in the lowest eigenvalues and corresponding eigenvectors. This is because the
lowest eigenvalues are those close to the Fermi energy. However, for the indefinite eigenvalue
problem, the eigenvalues close to the Fermi energy are non-extremal eigenvalues that cannot
be determined in the same way as it is usually done for extremal eigenvalues.

In total, we use three different eigenvalue solvers: an eigenvalue solver based on Arnoldi iter-
ations (from the ARPACK library [33]), the Jacobi-Davidson eigenvalue solver, and a dense ma-
trix eigenvalue solver from the LAPACK library. The latter one is only used for one-dimensional
problems. However, it can be employed for extremal as well as inner eigenvalues. The Jacobi-
Davidson method as proposed by van der Voerst [34] is used as one of two methods for the
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calculation of non-extremal eigenvalues. Arnoldi iterations are efficient in calculating extremal
eigenvalues. This efficiency can be further increased by employing appropriate polynomial spec-
tral transformations that amplify the lower part of the spectrum. By making use of a different
type of spectral transformation known as shift-invert, the Arnoldi method can also be used
to calculate non-extremal eigenvalues. For calculating non-extremal eigenvalues, the Arnoldi
method with shift-invert has proven to be faster and more reliable in our applications than
the Jacobi-Davidson algorithm. In the following, we will discuss in greater detail the Arnoldi
iterations and spectral transformations that we use in nextnano-++ for the solution of extremal
as well as non-extremal eigenvalue problems.

Extremal matrix eigenvalue problems resulting from positive definite operators

Because Arnoldi iterations are so widely used we want to provide a short description of this
algorithm here. The Arnoldi method is an iterative method for the determination of a few
eigenvalues and corresponding eigenvectors. For a given (complex valued) square matrix A and
a given initial guess q; with ||q;|| = 1, the Arnoldi method calculates an orthonormal basis of
the Krylov subspace span {qi, Aqi, A%qu, . .. ,, A*qy }. This is done as follows: For j =1,2,...

1. Qjy1 = Aq;. Fori=1,...,7, hijj = Qjs1 - Ui, Qj+1 < Aj+1 — hijas,
2. hjp; = H(ljﬂHa qj+1 = 61j+1/hj+1,j-

If Arnoldi iterations are used as an eigenvalue solver, one computes the so called Ritz
eigenvalues of the projection of A onto the orthonormal basis of the Krylov subspace. These
Ritz eigenvalues converge to the extremal eigenvalues of A.

By appropriate spectral transformations, the convergence of the Arnoldi method can be
improved considerably. For extremal matrix eigenvalue problems, we use polynomial spec-
tral transformations, either based on simple monomials 2", Chebyshev polynomials 7T;, (x), or
Legendre polynomials L,, (x). The basic idea behind this spectral transformation is that given a
certain polynomial p (x), the eigenvectors of the matrix A do not change by the transformation

A—p(A) (2.27)

whereas the spectrum does change. Therefore, one can determine the eigenvectors of A also by
determining the eigenvectors of p(A). The corresponding eigenvalues of A can be calculated
afterwards: If v is a normalized eigenvector of A, the corresponding eigenvalue is given by
v-Av. By a transformation that amplifies the extremal part of the spectrum, the convergence
of the Arnoldi method towards these extremal eigenvalues is significantly increased. In our
applications, we have observed speed-ups by up to a factor of 10 for the Chebyshev polyno-
mials as compared to the standard Arnoldi algorithm. By employing Chebyshev polynomials
the relevant part of the spectrum can be amplified more significantly as compared to simple
monomials. Therefore, the Chebyshev polynomials outrun the simple monomials by a factor
of 2. However, this requires defining an energy cutoff that separates the interesting part of the
spectrum from its remainder. To determine an appropriate energy cutoff in advance is difficult.
In addition, if the cutoff energy is too small, the Arnoldi iterations fail to converge at all. For
charge self-consistent problems, we have therefore developed the following robust strategy: In
solving the eigenvalue problem for the first time, we always employ the Arnoldi method with
the monomial spectral transformation that does not involve additional parameters. In solving
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the eigenvalue problem for the next time, we employ the Arnoldi method with Chebyshev spec-
tral transformation and use the highest eigenvalue found in the first iteration as a guess for the
cutoff. If convergence fails nevertheless, we fall back on the monomial spectral transformation.
The advantage of using polynomials for the spectral transformation is that polynomials of
a matrix A can be easily calculated. For this, one does not calculate p (A) explicitly, but only
matrix-vector products of p (A) and a vector q employing the highly efficient Horner scheme.

Non-extremal matrix eigenvalue problems resulting from indefinite operators

Arnoldi iterations can also be used to determine non-extremal eigenvalues by means of the
shift-invert spectral transformation. This spectral transformation is given by

A—(A=XN"" (2.28)

where A denotes the shift. By the shift-invert spectral transformation, non-extremal eigenvalues
around A\ become extremal eigenvalues either at the lower or the upper part of the spectrum.
ARPACK can then be used to specifically find those eigenvectors whose eigenvalues are either
greater or less than \.

The shift-invert spectral transformation is much more costly than polynomial spectral trans-
formation as each Arnoldi iteration step now requires to solve the linear system of equations
given by

(A= N & = qj. (2.29)

In our applications, A — X\ is Hermitian but indefinite. Nonetheless, it has turned out that in
most cases CG can still be used to solve Equation (2.29).

In nextnano++ Arnoldi iterations with a shift-invert spectral transformation are used for
the calculation of eigenvectors and eigenvalues in the 8-band k - p model. There, we can often
exploit the fact that the spectrum has a gap between the valence band and the conduction band
states. If this gap exists, the energy range of the gap is known in advance at least approximately
from the band structure in position space. In addition, the eigenvectors and eigenvalues that
we are interested in are exactly those below and above the gap. We therefore set the shift A to
a value close to but smaller than the upper boundary of the gap and determine the eigenvectors
and eigenvalues above the gap. Then we set the shift A to a value close to but larger than the
lower boundary of the gap and determine the eigenvectors and eigenvalues below the gap.

2.6 Solving non-linear systems of equations

In nextnano-++, a non-linear system of equations arises from the discretization of the non-linear
Poisson equation

V.e(x)Vo=—p(9). (2.30)

The non-linearity comes into play here by the non-linear dependence of the density p on the
electrostatic potential ¢, for example in terms of the Thomas-Fermi approximation for the
charge densities. For solving Eq. (2.30) we employ the Newton-Raphson algorithm with inexact
line search. First, we express Equation (2.30) in the following form

0=V -c(x) Vot p(6) = F(0) (2.31)
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in order to rewrite the problem into that of finding the zero of the function F'(¢). The Newton-
Raphson algorithm with inexact line search is then given as follows: For £ = 1,2, ... and given

b1
L & (\) = & = M(DsF) (8)] " - F (¢5)-
2. For)\—l,é,i,...,gbkﬂngk( with HF(gbk )Hzmln'

In the first step of the algorithm, a new guess for the potential is made that still depends
on the step length A\. This guess is based on the idea that to find the zero one should follow
the direction of the steepest descent given by [(D4F) (¢,)]" - F(¢,). The second step of
the algorithm describes the inexact line search: Along the direction of steepest descent one
determines the step length A for which ||F (¢)|| becomes minimal.

Except for the extra diagonal term D,p, the Jacobian matrix

(D F) (¢) = V - £ (%) V + (Dyp) () , (2.32)

is identical to the Poisson operator V -¢ (x) V. Since V -¢ (x) V is positive definite and Dyp is
positive for all physical p (¢), the Jacobian D, F must be positive as well. We therefore employ
the preconditioned CG to solve the linear system in step 1 of the Newton-Raphson algorithm.
As preconditioner we use either the incomplete Cholesky or the fill-in free Dupont-Kendall-
Rachford method.

2.7 Solving coupled systems of equations

In nextnano++, two sets of coupled systems of equations have to be solved. These are the cou-
pled Schrodinger and Poisson equations for equilibrium situations and the coupled Schrodinger,
current, and Poisson equations for non-equilibrium situations. We have to employ different so-
lution strategies for the two cases. For the coupled Schriodinger and Poisson equations we use
the highly efficient predictor-corrector approach developed by Trellakis et al. [27]. For the
coupled Schrodinger, current, and Poisson equations, we have to use an approach based on
underrelaxation. Accordingly, the solution of the coupled Schrédinger, current, and Poisson
equations is less efficient. In the following, the two methods are described in closer detail.
Both approaches can be combined with a newly developed idea that we have called subspace
iterations and that helps to accelerate the calculation by saving time in the solution of the
quantum mechanical eigenvalue problems [35].

Predictor-corrector approach for the coupled Schrédinger and Poisson equations

In solving the coupled Schrédinger and Poisson equations, the goal is to determine a charge
self-consistent solution for the charge densities or equivalently for the electrostatic potential.
The basic problem is that the Schrodinger equation

H(¢) ¥, = Ent, (2.33)

depends on the electrostatic potential ¢, whereas the Poisson equation depends on the eigen-
functions v,

V-e(x) Vo =—p[ty,1y,...]. (2.34)
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Due to the strong coupling between the equations, a simple iteration scheme does not converge.
Similarly, underrelaxation stabilizes the iteration only poorly and strong charge oscillations
from one iteration step to the next are observed that interfere with convergence.

This situation can be much improved by partially decoupling both partial differential equa-
tions using a predictor-corrector-type approach. To this end, the exact carrier densities p (x)
and n (x) from Eq. (1.49) and Eq. (1.50) are replaced by predictors depending on the electro-
static potential ¢

BIoI) =D o) pe; () ([Ery— [0 (%) = Ppuew (X)] = Eppp ()] /KT , (2.35)

Ao () = > g > 0l (00 f([=EL +e[6 (%) = Gprer (¥)] + Ern (x)] /KT),  (2.36)
i€CB J

where ¢,,., denotes the electrostatic potential from the previous iteration step. These predictors
for the quantum densities n (x) and p (x) are then used in the non-linear Poisson equation in
order to determine the new potential ¢ (x). Using this ¢ (x) the Schrodinger equation is solved
for a new set of eigenfunctions and eigenenergies. The method can be summarized as follows:
For £k =1,2,... and given ¢,

1. Solve H (¢,,) wff) = E,S’“)qpff) for a set of V., eigenfunctions ¢§k), ¢§k), o ,w%jv and corre-

sponding eigenenergies Efk), Eék), ceey EZ(\Z)V
2. Solve the non-linear Poisson equation V - ¢ (x) Vo, = —p (qbk +1)a where p is obtained

from p by replacing n by n and p by p with ¢, = ¢.

Once the iteration has converged we have ¢ = ¢, and therefore j [¢] (x) = p (x), 72 [¢] (x) =
n(x), i.e. the predictors yield the correct densities. This approach leads to rapid convergence
and no further steps are necessary to ensure convergence.

As exit condition for the iteration we require that

/d%wﬁwmﬁ@ﬂ—ﬁwauﬂ<6@w (2.37)

/H%Mumﬂuw—ﬁwuun<%m, (2.38)

i.e. separate convergence for the hole and electron charge densities. Here, d denotes the number
of spatial dimensions of the simulated region. Typical values for dqens are 1073 for 3-dimensional,
103 cm™? for 2-dimensional, and 10° cm~2 for 1-dimensional calculations. The meaning of dgens
can be best described as the residual change in the occupation of the eigenfunctions.

Underrelaxation approach for the coupled Schrédinger, current, and Poisson equa-
tions

In solving the coupled Schrodinger, current, and Poisson equations, the goal is to determine
a charge self-consistent solution for the quasi Fermi levels and the charge densities. Here, the
basic problem is that the Schrodinger equation

H(¢), = Eny, (2.39)
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depends on the electrostatic potential ¢, the current equation depends on the eigenfunctions
1,, via the charge densities

V- g1y () p [, s (%) VErp (x) = R (). (2.40)

V- iy (), s ] (%) V B (%) = R (%), (2.41)

and the Poisson equation depends on the eigenfunctions 1), as well as on the quasi Fermi
energies P, and Ep ,

V'&T(X) V¢: —p [EF,nvEF,pawlaw%"']‘ (242)

Whereas we can still apply the predictor-corrector-type method for the Schrodinger and the
Poisson equations, no such approach exists including the current equation and we therefore have
to use an underrelaxation approach for the quasi Fermi energies, as a simple iteration scheme
does not converge due to strong oscillations in the charge densities from one iteration step to
the next. The combined predictor-corrector and underrelaxation approach can be summarized
as follows: For k =1,2,... and given ¢, Elglil, and EI(?}}))

1. Solve H (¢,) ) = Eflk)@/)g“) for a set of N, eigenfunctions zﬁgk), wg’“), . ,@/}E\]fe)v and corre-

sponding eigenenergies Efk), E;k), cee E](\Z)V .
2. Solve
k) (k = (k1
Vo, (X)p M p® ,wNev] (x) VEE (x) = —R (x), (2.43)
Vs () [0, ol ] 00 VEE™ () = R(x) (2.44)

for the quasi Fermi energies E§ ) and E(kH).

3. Determine new quasi Fermi energies El(?k; Y and El(?k; 2 according to

B = aBEY + (1 - o) BY), (2.45)
BEY = aBIY 41— a) BY), (2.46)

where o denotes the underrelaxation parameter.

4. Solve the non-linear Poisson equation V¢ (x) Vg, ., = —p [ng;;l), Hl)} (gka) where

p is obtained from p by replacing n by n and p by p with ¢, = ¢.

As exit condition for the iteration we require that

/ A% [ [bsa] (2) = P164] (2)] < Oens: (2.47)

/ddx ‘ﬁ [ria] () — 71 (@] (x)} < Odenss (2.48)

and "
(k+1) k
HE EF,p

< 5Fermi7 (249>
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Figure 2.2: Current-voltage characteristics of a triple-gate Si MOSFET with a 5nm X 5nm
channel and 25 nm gate length (inset). The graph shows the I-V curves for classical (gray line)
and quantum mechanical (black line) calculations. In the latter case the current is smaller.
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< 5Fermi- (250)

For the underrelaxation parameter, values of about @ = 0.2 have turned out to be reasonable
in a wide range of applications. Typical values for dpem; should be around 1075 eV or smaller.

Figure 2.2 shows the I-V characteristics of a triple-gate silicon MOSFET that has been
calculated by the author using the described method. The device has a 5nm X 5nm channel
and 25nm gate length. The number of grid points amounts to 5 x 10*. The calculation of
each voltage step of the I-V curve took approximately two hours on a state-of-the-art PC and
required about 200 iteration steps.

Subspace iterations

The predictor-corrector approach as well as the underrelaxation approach can be combined with
a newly developed idea that helps to accelerate the calculation by saving time in the solution of
the quantum mechanical eigenvalue problems [35]. We have denoted this method as subspace
iterations. The idea behind this method is that the Schrodinger equation

H(¢) ¥, = Eniby, (2.51)

is solved exactly only in a limited number of iteration steps, whereas in the remaining steps, the
Hamiltonian is diagonalized in a subspace of the full Hilbert space. This subspace is the span
of only a few of the eigenvectors that are lowest in energy. In detail, this is done as follows:
For given ¢,

1. Solve H (¢y) % = E,SO)@/J%O) for a set of N, eigenfunctions 1/)(10), ¢§0), . ,ngge)v and corre-

sponding eigenenergies Efo), Eéo), cee E](\?)

ev

2. Determine ¢, .

Then for £k =1,2,...
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1. If the wff’l) are exact eigenvectors or if

max ( / A% |5 [$1s1] (2) = B104] () / d'% |7 [$ys1] (@) — 714 <x)|) > Foubapace-Odons

(2.52)
proceed with step 4.

2. Solve H (¢;,) ™ = E,S’f)wg’“ for a set of N, exact eigenfunctions z/zﬁ“, gk), . ,wg’;jv and

corresponding eigenenergies E%k), Egk), e E](\]f)

ev

3. Proceed with step 6.

n

4. Determine (Hk)nm = <¢("3*1)

H (¢,) ’¢,&’§*1>>, nom=1,..., Nu.

5. Diagonalize (H (k))nm and obtain N,, approximate eigenfunctions ¢§’“), wék), e ,1/151\2‘, and

corresponding eigenenergies Efk), E;k), e E](\Z)v.
6. Determine ¢, _ ;.

The decision whether the Schrodinger equation is solved exactly or within the subspace is met
in step 1 of the second block. Each exact solution is followed by at least one approximate
solution. Further approximate solutions are inserted if the residuals of the electron and hole
charge densities are greater than the convergence criterion d4ens by at least the subspace residual
factor foubspace- Lypical values for foubspace are of the order of 10°. Note that the exit condition is
modified so that the iteration is always terminated following an exact solution of the Schrédinger
equation.

2.8 Summary

In this chapter, we have introduced the techniques for the numerical solution of the semicon-
ductor equations. The discretization of those partial differential equations results either in
linear systems of equations or large matrix eigenvalue problems that can be solved by iterative
algorithms. We have presented the set of algorithms that is employed by nextnano++ and
we have shown its concrete application for the solution of the semiconductor equations. The
solution of the semiconductor equations aims at the determination of a charge self-consistent
solution for the electrostatic potential and the quasi Fermi energies. This also requires the so-
lution of the non-linear Poisson equation and the coupled systems of Schrodinger and Poisson
as well as Schrodinger, current, and Poisson equations. For the coupled systems, two different
approaches have been chosen: a predictor-corrector method for the coupled Schrodinger and
Poisson equations, and an underrelaxation method for the coupled Schrodinger, current, and
Poisson equations. Both approaches have been combined with the newly developed subspace
iteration method.
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Program structure

3.1 Libraries

In the following sections we want to give an overview on the program structure of nextnano-++-.
Nextnano++ is written mainly in C+4 with only the core numerical routines still being
implemented using Fortran. By employing a modern, object oriented language such as C++,
we can benefit a lot in terms of code reuse by means of inheritance and generic programming
as will be discussed exemplarily later on.

Nextnano++ is built in a modular way from multiple libraries. These libraries are divided
into the core numerical libraries and the application specific libraries. Figure 3.1 shows the
core numerical libraries and their dependencies. The libraries BLAS (Basic Linear Algebra
Subprograms [36]) and LAPACK (Linear Algebra PACKage [37]) are provided from external.
We use the BLAS library provided by the Intel Math Kernel Library (MKL). Further, we use
LAPACK 3.0 with minor changes as compared to Reference [37]. The libraries BLAS as well
as LAPACK are written in Fortran. On top of BLAS and LAPACK we have placed the mixed
language library £951ibrary. This as well as mathlib, arraylib and sparselib depend on
the library systemlib that provides a unified interface for the control of debug and range
check options. The library £f951library implements the following classes of routines: sparse
matrix routines, iterative solvers for sparse matrices, Fermi-Dirac integrals, and special func-
tions. Further, it provides the necessary Fortran bindings as well as templated C++ wrappers
for accessing the library functions from within Fortran as well as C++ programs. Templated
C++ wrappers are also implemented for several LAPACK and BLAS subroutines. The library
mathlib is written completely in C4++. It depends on f95library and implements classes
for complex arithmetic (to be used as an alternative to the C++ standard library implemen-
tation for complex numbers), templated vector arithmetic, and templated second rank tensor
arithmetic. The library arraylib is based on mathlib and f95library and is also written
completely in C++. It implements a templated class for multi-dimensional arrays and relevant
operations (serialization, arithmetics, diagonalization, etc.). The library sparselib depends
on arraylib and f95library. Sparselib provides a templated class for sparse matrices and
corresponding operations (arithmetics, linear solvers, eigenvalue solvers, etc.). Sparselib is
also written completely in C++.

Figure 3.2 shows the application specific libraries and their dependencies. The libraries
parser and fileIOlib mainly deal with input and output operations and provide classes to
parse, validate, and process input files and to format the output data for use with Origin and
AVS/Express. The library discretization provides a very general class for the discretiza-

33
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mathlib
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arraylib
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sparselib

Figure 3.1: The core numerical libraries used by nextnano++. The programming language
is indicated in light gray (C++) and dark gray (Fortran). f95library is a mixed language
library. The libraries BLAS and LAPACK are provided from extern. The arrows show the
dependencies between the libraries.
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Figure 3.2: The project nextnano++ and the application specific libraries. Nextnano+-+
and all application specific libraries are completely written in C4++ using object oriented pro-
gramming techniques such as inheritance and generic programming. The arrows indicate the
dependencies between nextnano++, the application specific libraries as well as the core numeric
libraries mathlib, arraylib, and sparselib.
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Figure 3.3: Flow chart of the main loop. The main loop iterates the bias voltages that are
applied to the contacts.

tion of up to second order partial differential equations on one-, two-, and three-dimensional
non-uniform tensor product grids based on the box integration finite differences scheme. This
discretization library is used in the libraries schrédinger, poisson, and strain for the dis-
cretization of the Schrodinger equation, the Poisson equation, and the strain equation, respec-
tively. In the library piezo, the discretization class is employed for the discretization of the
divergence operator.

3.2 Program flow

In this section, we address the program flow of nextnano++-. For clarity, in Fig. 3.3 we show
a flow chart of only the main loop and present the flow chart for the charge self-consistent
solution of the Schridinger, Poisson, and current equations separately in Figure 3.4. The main
loop iterates the voltages that are applied to the contacts. Data that does not change while
iterating the voltages is set up and calculated prior to the main loop in the "Setup" step. This
includes (in the given order):

e Parsing, validating, and processing of the input file.
e Parsing, validating, and processing of the database file.
e Grid generation.

e Geometry processing (determination of materials, alloy compositions, doping profiles, and
fixed charges).

e (Calculation of the strain fields.

e (Calculation of polarization charges.

e Determination of the classical bandstructure based on the model solid by van de Walle.
e Determination of the intrinsic density.

e Discretization of the Poisson equation.
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Figure 3.4: Flow chart for the charge self-consistent solution of the Schrédinger, Poisson, and
current equations.

e Output of materials, alloy compositions, doping profiles, fixed charges, polarization charges,
the intrinsic density, and the strain fields.

Following the "Setup" step, the charge self-consistent solution of the Schrodinger, Poisson,
and current equations is calculated and the output is generated. This is repeated for the
various voltages specified in the input file. The output includes the electrostatic potential,
charge densities, quasi Fermi levels, current densities, wave functions, energy spectra, band
structure in real space and reciprocal space, and transmission probabilities.

In Fig. 3.4 the flow chart of the charge self-consistent solution of the Schrodinger, Poisson,
and current equations is shown. Data that does not change while iterating the solution of the
mentioned equations is set up and calculated in the "Init" step. This includes:

e Initialization of the quasi Fermi levels employing an empirical approach.

e Update of the discretization of the Poisson equation to take into account the voltages
applied to the contacts.
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QuantumSolverBase

QuantumSolverTemplate<TYPE,SOLVERTYPE>]

QuantumSolver1Band<TYPE,SOLVER>| QuantumSolverNBand

A

QuantumSolver1BandR QuantumSolver1BandC

Figure 3.5: Class hierarchy of the set of classes that implement the unified interface for the
solution of the single band Schrodinger equation and the multi-band k - p equations.

e Initialization of the electrostatic potential (either locally charge neutral or equal to the
quasi Fermi level).

Following the "Init" step, the non-linear Poisson equation coupled to the current equation
is solved using the Thomas-Fermi approximation for the charge carrier density. For equilibrium
situations, the solution of the current equation is omitted. For the solution of the coupled system
of the non-linear Poisson equation and the current equation, we employ the underrelaxation
algorithm presented in Section 2.7. For the solution of the non-linear Poisson equation, we use
the Newton method with inexact line search as presented in Section 2.6.

The solution for the electrostatic potential and the quasi Fermi levels is the initial guess for
the solution including the quantum mechanical charge carrier densities. As described in closer
detail in Sec. 2.7 we repeatedly solve the Schrodinger, the current, and the Poisson equation.
Again, for equilibrium situations, the solution of the current equation is omitted. For the
solution of the coupled system of the Schrodinger and the Poisson equation we use the predictor-
corrector algorithm presented in Section 2.7. The iterations are repeated either until separate
convergence of the electron and hole densities and the electron and hole quasi Fermi levels or
until exceeding the maximum number of iterations. Following the self-consistent calculation
of the Poisson, Schrodinger, and current equation, additional calculations are performed in
the "Postprocessing" step. This includes calculations that use the electrostatic potential, the
quasi Fermi levels, and the charge density as input parameters such as the determination of
transmission probabilities using the contact block reduction method and the calculation of the
current densities.

3.3 Class hierarchy

In this section we want to show exemplarily the use of inheritance within nextnano++ for the
classes that implement the quantum mechanical models for the electronic structure calculations.
Further, we discuss in more detail the design of the class simulator that manages the data,
the data flow, and the program flow.
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As an example for the use of inheritance within nextnano++ we choose the set of classes
that implement the solution of the Schrodinger equation. Here, the details depend strongly
on the specific model that has to be solved, whereas the basic properties are the same for
all models. This suggests to implement the properties common to all models in a single base
class and to derive more specialized sub classes that implement the model specific properties.
Figure 3.5 shows the class hierarchy that results from this approach. The common properties
that are provided by the base class QuantumSolverBase include interfaces to methods for:

e discretization,
e determination of eigenvectors and eigenvalues,

e calculation of the charge density and its derivative with respect to the electrostatic po-
tential.

Depending on the presence of magnetic fields and the number of bands (either single-band or
multi-band), eigenvectors are either real valued or complex valued. This is taken into account by
means of the derived class QuantumSolverTemplate<TYPE,SOLVERTYPE> that provides a uni-
fied interface independent of the type of the eigenvectors. The calculation of the charge carrier
density has to be implemented differently depending on the number of bands, the method used
for determining the eigenvectors and eigenvalues, and the method used for discretization. There-
fore, separate sub classes are derived from class QuantumSolverTemplate<TYPE,SOLVERTYPE>
that either deal with the single-band Schriodinger equation or the multi-band k- p equation. For
the single-band case, the class QuantumiBandSolver<TYPE,SOLVER> is the basis for the types
QuantumSolver1BandR and QuantumSolver1BandC that differ in the type of the eigenvectors
(either real or complex). The class QuantumNBandSolver is the generic class for all multi-band
k - p models. In this case, the eigenvectors are always complex valued.

Now, we want to address the design of the main class of nextnano++ termed Simulator.
The class Simulator manages all simulation relevant data, the data flow, and the program
flow. The class Simulator consists of objects that are instances of the following 14 classes:
Flow, Input, TensorGrid, Database, Structure, Cbr, Poisson, Contacts, Global, Currents,
Bandstructure, Densities, Quantum, and Strain. This "has-a" relation is depicted in Fig. 3.6
by the solid black arrows emanating from class Simulator. Each of these 14 classes is respon-
sible for managing a specific facet of the simulation. The main issue concerning the data flow
is that most of these 14 classes have dependencies on data from other classes. For example
all classes except for class Database, TensorGrid, Input, and Flow depend on data provided
by class Global. In Fig. 3.6 this dependencies are indicated by the dash-dotted arrows that
point towards class Global. All objects that depend on class Global obtain a reference to the
simulator’s instance of class Global on construction. This minimizes the effort in passing data
as arguments, while at the same time avoiding the disadvantageous use of global data. In the
same way we have also treated the data dependencies between the other classes. These are
depicted by the dotted arrows in Figure 3.6. For example, the class Poisson depends on class
Contacts, class Currents, and class Densities. This is because in the course of solving the
non-linear Poisson equation, the class Poisson needs to know about the voltages applied to the
individual contacts (provided by class Contacts), the quasi Fermi levels for electrons and holes
(provided by class Currents), and various densities (provided by class Densities). The dashed
arrows indicate dependencies between members of a certain class and one of the other classes.
For example class Densities possesses a reference to the list of QuantumRegions contained
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in an object of type Quantum (dashed arrow). On the other hand, class Quantum contains a
reference to an object of type Densities (dotted arrow). Also note that in some cases, data is
also shared directly between the classes. The members Acceptors, Donors, FixedCharges, and
Polarization in the simulator’s instance of class Densities are only pointers to the actual
data contained in the simulator’s instances of class Structure and class Strain, respectively.

3.4 Input processing

In this section, we give an overview on the input processing implemented in nextnano-++-.
Input processing as implemented in nextnano+-+ is a three step process. We use a parser
based on the Flex scanner generator and the Bison parser generator to first parse a so called
validator file and a corresponding input file [38]. The validator file as well as the input file
obey the same grammar with some validator specific features disabled for input files. The
grammar allows describing assignment statements as well as a hierarchical data structure in
terms of nested groups. When parsed, this hierarchical data structure is translated into a tree
like symbol table with each node either representing a group or an assignment. Nodes that
represent groups may have sub nodes; nodes that represent assignments may not have sub
nodes. An example is shown in Figure 3.7. The second step is that the validator symbol table
is used to validate the input file symbol table. By this, a certain logical structure is enforced for
the input file: groups and assignments are restricted to certain names and types, the number of
identically named groups can be fixed, and conditions such as "group A requires the existence
of group B" can be defined. This approach of validating the logical structure of the input by
means of a validator file is similar to that of XML schemes.

Following the successful validation, the validator symbol table is discarded. The input file
symbol table is now guaranteed to follow the logical structure defined by the validator file.
All groups and assignments declared in the input file are stored in the tree like structure of
the symbol table. The third step in processing the input is the automated instantiation and
initialization of hierarchical linked objects right from the symbol table. To this end, a sub class
of class Group (provided by the parser library) is implemented for each group that according
to the validator can be present in the input file. This is illustrated in Fig. 3.8 for the group
"global" shown in Figure 3.7. For each possible assignment within this group a data member of
the respective type has to be provided. Similarly, for each nested group, an instance of the class
corresponding to this nested group has to be provided. Further, the data members and nested
group’s objects have to be associated with the names that are used in the input file for the
corresponding assignments and nested groups. This is done by means of the statements "define"
(for data members) and "link" (for sub groups) in the default constructor of the class. The data
members are now initialized automatically from the symbol table. In the same manner, objects
of classes derived from class Group are automatically instantiated (if necessary) and initialized.
Thus the data from the symbol table is transferred to a data structure of hierarchically linked,
individually typed objects and can therefore be conveniently accessed from within the program
in the same way as any other kind of data. In this, the procedure follows the ideas of reflective
programming.
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Figure 3.6: Design of the main class of nextnano++ termed Simulator. The class consists
of the following 14 objects: Flow, Input, TensorGrid, Database, Structure, Cbr, Poisson,
Contacts, Global, Currents, Bandstructure, Densities, Quantum, and Strain. The rela-
tions between the objects and class Simulator are indicated by arrows. The solid black arrows

indicate a "has-a" relation. The dashed, dotted, and dash-dotted arrows indicate references.
Also shown are the most relevant data members of the individual objects.
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global/{
database = “zincblende.in”
simulate3D{}
substrate(

name = “GaAs”
}
temperature = 300
crystal_zb{
x_hkl = [1,0,0]
y_hkl = [0,1,0]

database kimulate3D] [substratd [temperaturg

‘zincblende.in’ 300 /\

name y_hkl

X_hKl

‘GaAs’ 0,1, 0

1,0, 0
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Figure 3.7: Example for the hierarchical structure of the nextnano++ input files and the tree
like symbol table that results from parsing the input file. Nodes shaded in gray represent groups

and may have sub nodes. The other nodes represent assignments.

class Global : public Group {

string database;
Group simulate3D;

Global () {
define <string> (”database”, database);

}i

link <Group> (”simulate3D”, simulate3D);

Figure 3.8: Example of the class Global derived from class Group for processing the input
related to the group "global" (see Figure 3.7). For each assignment in group "global" a data
member is provided (here only for "database") and the data member is associated with the
name of the assignment by the "define" statement in the default constructor. Similarly, for
each nested group of group "global" an instance of class Group (or a derived class) is provided
(here only for "simulate3D"). The instance is associated to the name of the nested group by

the "link" statement in the default constructor.
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L,

Figure 3.9: Constructive solid geometry shapes (green). From left to right: semiellipsoid,
cylinder, and cone. The shapes are composed of the intersection of quadrics (green and red)
and one or two planes (blue).

3.5 (Geometry processing

The geometry processing as implemented in nextnano-++ is another example, where large
benefit is obtained from object oriented programming techniques. In nextnano+-+, the de-
vice geometry is defined by unions and differences of relatively simple geometric objects. In
three spatial dimensions, these include cuboids, obelisks, cylinders, semiellipsoids, and cones.
This approach for defining complex shapes from basic shapes (also called primitives) is called
constructive solid geometry (CSG).

Here, the advantage is that the surface of the primitives can be easily described by relatively
simple mathematical formulas. Therefore, this allows one to easily check if a specific grid point
lies within or outside the primitive. The primitives used in nextnano++ are based on even
more simple geometric objects, namely planes and quadratic surfaces (also called quadrics).
Planes are defined by an emission point a and a normal vector n

Plane = {x € R*: (x —a) -n =0}, (3.1)
quadrics are defined by a mid point m, a symmetric second rank tensor 7', and a scalar s
Quadric={x € R’: (x —m)-T (x —m) = s} (3.2)
Planes divide space into two half spaces that are given by
Lower half space = {x € R*: (x —a) -n < 0}, (3.3)
Upper half space = {x e R*: (x —a) -n >0} . (3.4)
Quadrics divide space into inside and outside
Inside = {x € R*: (x —m) - T'(x —m) < s}, (3.5)

Outside = {x € R®: (x —m) - T (x —m) > s}. (3.6)
Obelisks are defined by the section of six lower half spaces Ly, ..., Lg

6
Obelisk = (1] L;. (3.7)

i=1
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As shown in Fig. 3.9, semiellipsoids are defined as the section of the inside of an ellipsoidal
quadric I with s = 0 and a lower half space L

Semiellipsoid = I N L, (3.8)

so that one half of the ellipsoid is cut off. Cylinders and cones are defined as the section of the
inside of a conic quadric I with s = 1 and two lower half spaces L, Lo

Cylinder/Cone = I N Ly N L. (3.9)

The surface described by a conic quadric extends to infinity in both directions along the sym-
metry axis. The two half spaces are placed so that only a finite section of the conic quadric
remains that either represents a cone, a truncated cone, or a cylinder. This is also shown in
Figure 3.9. Note that a cylinder is nothing else than a cone with the cone’s tip at infinity.
The cuboid is a special case of the obelisk with its faces parallel to the coordinate planes.
The inside of the cuboid can therefore be easily defined in terms of six conditions as follows

Cuboid = {X eER:ay<a;<b;y, i= 1,2,3} . (3.10)

The determination of the symmetric second rank tensors 7" for the ellipsoidal and conic quadrat-
ics from the parameters provided in the input file is discussed in detail in Appendix B.

For two spatial dimensions the primitives are obtained from the primitives in three spatial
dimensions by sections in the x3 = 0 coordinate plane. They include rectangles, trapezoids,
and semiellipses. In one spatial dimension, the only primitive is given by the line segment.

3.6 Summary

For nextnano++ we have used a modular structure in terms of core numeric libraries and
application specific libraries. The core numeric libraries are written in C++ and Fortran, where
Fortran itself is reduced to a minimum. The application specific libraries and nextnano+-+
itself are completely written in C++. This allows the heavy use of modern object oriented
programming techniques such as inheritance and generic programming and therefore a high
degree of code reuse all over the project. An innovative approach for the input processing based
on the ideas of reflection and XML schemes has been developed. The CSG based geometry
processing allows for an easy and convenient definition of even complex device geometries.
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Chapter 4

Calculation of the charge carrier
density by Brillouin zone integration

4.1 Introduction

The calculation of the charge density n (x) along the growth axis of a heterostructure with
two-dimensional translational invariance requires the evaluation of the following integral

n(z)=) (er)2/ &’k p; (2, k) f (B (k) (4.1)

j Qpz

over the two-dimensional Brillouin zone {2gy in the transversal reciprocal space. The summation
runs over the energy subbands, p; (x, kH) is the probability density of the eigenstates of the jth
subband, F; (kH) is the dispersion relation of the jth band, and f (F) is the Fermi function.
Instead of directly evaluating the integral in Eq. (4.1), it is possible to first calculate the local
density of states (LDOS) according to

g(x, E) = Z/ﬂ &Ky p; (w,k) 6 (B = Ej (k) (4.2)

and to determine the charge density n (z) from the LDOS as follows:

n(x):#/_ZdEg(x,E)f(E) (4.3)

It has been recognized already for decades that integrals such as the one in Eq. (4.2) are
exemplary for the calculation of a large number of properties of solids [39]. Correspondingly,
a multitude of very sophisticated methods has been developed for the numerical evaluation
of Eq. (4.2) [40-55]. These methods try to reduce the number of Brillouin zone points k|
where p; (:1:, kH) and F; (kH) are evaluated exactly by using so called special k points and by
interpolating p; (x, kH) and E (k”) up to quadratic order.

However, for the calculation of the charge carrier density, no advantage is gained by the
artificial separation of Eq. (4.1) into Eq. (4.2) and Equation (4.3). On the contrary, the two-
dimensional integral for the LDOS g (z, E) has to be performed multiple times in the evalu-
ation of Eq. (4.3), whereas a direct evaluation of Eq. (4.1) requires only one evaluation of a
two-dimensional integral. In particular this is important in our case, where Eq. (4.1) has to be

45
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evaluated multiple times in the course of solving the Schrodinger and Poisson equations charge
self-consistently. We have therefore developed a novel method that calculates the charge den-
sity by a direct integration over the Brillouin zone according to Equation (4.1). We also use
interpolation schemes for p; (x, kH) and E; (kH) to reduce the number of Brillouin zone points
k| where p; (3:, kH) and I (k”) are evaluated. For p; (3:, kH) a linear interpolation proves to be
sufficient, whereas I; kH) requires higher order interpolation.

In many situations it is possible to exploit the symmetry of the crystal when integrating over
the two-dimensional Brillouin zone. For a zinc-blende crystal with growth direction (001), the
irreducible wedge of the two-dimensional Brillouin zone is only one eighth of the original two-
dimensional Brillouin zone. However, in general the determination of the irreducible wedge is a
complicated group theoretical problem that becomes even worse if strain has to be considered.
Instead of solving this problem exactly, we have developed an approach that determines the
irreducible wedge by evaluating the subband dispersion at specific points in the two-dimensional
Brillouin zone.

The integral given in Eq. (4.1) can also be solved analytically for some special cases. These
include the case of the single band effective mass model with parabolic dispersion if the mass
is position independent. For anisotropic masses and non-diagonal mass tensors one has to
calculate the correct density-of-states mass. This leads to the expressions given by Eq. (1.51)
and Equation (1.52). If the mass is position dependent we allow for the following approximation:
We still use Eq. (1.51) and Eq. (1.52), but we determine an average density-of-states mass mqdos
separately for each eigenstate j. For this, we average the position dependent density-of-states
mMass Mqdos () according to the probability density p; (z) of the respective eigenstate

Fton,s — / A mgges () p; (). (4.4)

In most other cases Eq. (4.1) can no longer be solved analytically and we employ our novel
method for its numerical evaluation. In particular, this includes the case of all multi-band
k - p models. While the calculation of the charge density according to Eq. (4.1) can be done
straightforward for the 6-band k - p model, the following complication arises for the 8-band £ - p
model and for all other multi-band £ - p models that deal simultaneously with conduction as
well as valence bands. We will denote these kinds of multi-band & - p models as mixed-band
k - p models. In occupying the eigenstates found within these mixed-band models, there is in
general no possibility to decide if a specific eigenstate has to be occupied by an electron or by
a hole. In fact it turns out that one and the same eigenstate can effectively contribute to the
electron charge density and to the hole charge density.

We do not want to deny that also in the case of the mixed-band k - p models it is often
possible to do a classification of the eigenstates into electrons and holes. In particular, this
can be done if a positive band gap exists between the valence band highest in energy and the
conduction band lowest in energy. While this is the case for all undoped type I heterostructures
it does not include the interesting cases of type Il heterostructure with broken gap. Similarly,
this does also not include doping superlattices (so called nipi crystals [56, 57]) where depending
on the doping concentration the band gap in position space may also become negative.

For these broken gap heterostructures we have developed a novel method for the determi-
nation of the charge carrier density for mixed-band % - p models that is not limited to positive
spatial band gaps. By means of this method it is therefore possible to calculate the electronic
structure of broken gap type II heterostructures and nipi crystals in the 8-band k - p model in a
fully charge self-consistent way. Already at the beginning of the 1980th Altarelli has published
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an article, where the electronic structure of an InAs/GaSb broken gap type II superlattice in
a mixed-band k - p model including two valence and one conduction band is calculates in a
charge self-consistent way [58]. And only recently a couple of articles have been published
[59-61] where properties of AlSb/InAs/GaSb broken gap type II heterostructures are analyzed
based on a charge self-consistent calculation of the electronic structure using an 8-band k - p
approach. However, in all cases the authors do not give a description of their methods for the
calculation of the charge density. Nonetheless, we believe that the method used in references
[59-61] differs fundamentally from our approach, because as a matter of principle our approach
always yields the total charge density (i.e. the sum of electron and hole charge density), whereas
Fig. 1 in Ref. [59] indicates that the electron and the hole charge densities have been calculated
separately.

This chapter is organized as follows: In Sec. 4.2 we introduce our novel method for the
two-dimensional Brillouin zone integration. In this section we also analyze the convergence
behavior of the method. Our novel approach for the calculation of the charge density for mixed-
band £ - p models is introduced in Section 4.3. In Sec. 4.4 we present the application of the
method to doping superlattices. The chapter is concluded by a summary and outlook.

4.2 A novel method for the two-dimensional Brillouin
zone integration

4.2.1 Integration method

To determine the charge density according to Eq. (4.1) we have to evaluate integrals of the
form

I (z) = /Q k) p; (2, k) f (B (k) (4.5)

where
N

x kH = (4.6)

denotes the probability density of eigenstate wj (x, k||) of the jth subband with components

¢§1), . ,q/zéN) at point z along the growth axis and at point k| in the transversal reciprocal
space. The dispersion relation of the subband is given by E; (k”). The occupation is determined

by the Fermi function
1

T = =B o]+ o

where Er denotes the quasi Fermi level and may also depend on z, i.e. Ep = Ep ().

A lot of work can be saved in the evaluation of Eq. (4.5) by exploiting the symmetry of
the crystal in the plane orthogonal to the growth direction. Figure 4.1 shows all five different
two-dimensional point lattices and the corresponding Wigner-Seitz cells. For the reciprocal
lattice, the Wigner-Seitz cell is called Brillouin zone. The Brillouin zones for all five different
two-dimensional reciprocal point lattices are shown in Fig. 4.2 together with the irreducible
wedges that result from the full point symmetry. Instead of integrating over the full Brillouin
zone ()gpz, it is sufficient to integrate over the irreducible wedge 2w and to multiply the result
by the ratio of the volume |Q2py| of the full Brillouin zone and the volume |Qrw| of the irreducible
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hexagonal  primitive rectangular square

---------

oblique centered rectangular

Figure 4.1: The five different two-dimensional point lattices and the corresponding Wigner-Seitz
cells (solid lines). The Wigner-Seitz cells can be constructed from the perpendicular bisectors
(dotted lines) of the connecting lines between the lattice point in the center of the Wigner-Seitz
cell and all other lattice points.

wedge
_ 98]
0wl Sy

I (x) dKyp; (%) f (E; (k) - (4.8)

In the numerical evaluation of the integral it is advantageous to perform the integration
over a larger part Qxrw of the Brillouin zone than the irreducible wedge. We will call this part
of the Brillouin zone the extended irreducible wedge (XIW). We want to emphasize that this
does not require to evaluate p; (x, kH) and E; (k”) more often, because the values of p; (fE, k||)

and F; (k”) outside the irreducible wedge can be immediately obtained by the application of
symmetry operations. Thus the integral that we will eventually evaluate is given by

9]

N 1Qx1w ] Jogw

I; (x) &Ky p; (X)) f (5 (k) - (4.9)

Extended irreducible wedges are only used in the case of the hexagonal and the square reciprocal
point lattice. They are shown in Figure 4.3. In all three other cases, the extended irreducible
wedges are identical to the irreducible wedges. However, to the boundary of the Brillouin zone
the integration range is modified so that the integration can always be performed over a square
or rectangle as shown in Figure 4.4. This is possible because the k - p dispersion does not show
the translational symmetry of the lattice. For practical purposes it is even possible to restrict
the integration to a small fraction of the Brillouin zone centered at k; = 0. We specify this
fraction by referring it to the radius of a sphere with the same volume as the three-dimensional
bulk Brillouin zone.

The next few paragraphs will be more technical as we describe the details of our numerical
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ky ky
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oblique centered rectangular

Figure 4.2: The Brillouin zones that correspond to the five different two-dimensional reciprocal
point lattices. The shaded part of the Brillouin zone is the irreducible wedge resulting from the
full point symmetry of the two-dimensional point lattice.

integration scheme. In essence we want to calculate the expression

/Q 4’k g (k) (4.10)

where () is either a square, a rectangle, or a rhombus with interior angles of 60° and 120°. Now
we subdivide €2 uniformly into finite quadrangular integration patches that are congruent to §2.
This results in a set of patches L,, a set of k|| points (vertices) L., and a set of quadruples L
that enumerate the k| points at the four vertices of each patch. The area of each of the patches
is denoted by A. Then, the integral (4.10) is approximated by

/ kg (k) =AY g (4.11)
@ peLlp

where g, is determined as follows: For the case of the rectangular integration ranges (square,
rectangle), we apply the common two-dimensional trapezoidal rule

ij (m ki’ ) (Ej (kﬁp’i)», (4.12)

where k|(|p ) denotes the k| point at the ith vertex of patch p. In the limit of A — 0, the approxi-

mation A Zpe 1, 9p converges towards fQ d’kyg (kH) quadratically in the spacing of neighboring
k| points, i.e. proportional to A as one would expect for the trapezoidal rule. However, for the
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hexagonal square

Figure 4.3: The integration ranges for the hexagonal and for the square lattice. As can be
seen from Fig. 4.2 the irreducible wedges for these two lattices are actually smaller than the
extended irreducible wedges.

primitive rectangular  centered rectangular oblique

Figure 4.4: At the boundary of the two-dimensional Brillouin zone the irreducible wedge is
modified to obtain integration ranges of square and rectangular shape, respectively. This pro-
cedure is justified by the fact that the k- p dispersion does not obey the translational invariance
of the reciprocal point lattice.

case of the rhombus shaped integration range, this simple two-dimensional trapezoidal rule has
to be changed. The reason for this is that to satisfy the symmetry of the hexagonal Brillouin
zone (which is a multiple of a three-fold symmetry) the integration patches should be equilat-
eral triangles instead of rhombi. This is shown in Figure 4.5. But rhombi with interior angles
of 60° and 120° can be thought as being made up of two equilateral triangles, i.e.

9 = é.z () 1 (8 (7)) + %2;4 (k) 7 (B ()

)

_ ! Z p; (x k“> (Ej (kﬁ’”“)) Z D, (x,k‘(‘p’i)> f (Ej (kﬁp”)). (4.13)

7,13

The convergence behavior shows that we are able to calculate fQ d’kyg (kH) with arbitrary
precision. However, this requires to know p; (a:, kH) and F; (kH) for a correspondingly large
number of k| points. But we can also improve the accuracy of our integration without increasing
the number of k| points where p; (:L‘, k||) and I (k”) are evaluated exactly. The main source
for integration errors has its reason in the Fermi function. The Fermi function drops from one
to zero over an energy range of the order of kg7'. If the difference in energies at neighboring k|
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1 o 1 2

Figure 4.5: The two distinct integration patches. For the square and rectangular integration
range, the integration patch is a square (left). For the rhombus shaped integration range, the
patch is a rhombus with interior angles of 60° and 120° (right). This can be thought of being
made up of two equilateral triangles. The vertices are numbered from 1 to 4 starting with the
lower left vertex and proceeding counter-clockwise.

points is larger than kg7 or of the order of kgT', the integration error is large even if the change in
Dj (a:, kH) and in (k”) is small. This problem can be solved by an appropriate interpolation
of p; (x,kH) and F; (kH) between the vertices of an integration patch. Equation (4.12) and
Eq. (4.13) then translate into

N 4
1 U,V U,V
b=t S0 S () (110
u,0=1 1=1

and

N
1 u,v U,V u,v u,v
gpzézl . >f<E§ ))+22p§ )f<EJ(. ’) . (4.15)
u,v=1 Li=1,3 1=2,4
The given formulas for g, assume that we introduce N — 2 additional points in reciprocal space
along the two sides of the integration patch. These additional k| points as well as the k|
points at the vertices are numbered by u, v ranging from 1 to N. The interpolated values for

the probability density and for the energy dispersion at point (u,v) are then assumed to be

given by pg-u’v) and EJ(-u’v), respectively. It turns out that for the probability density a bilinear
interpolation is sufficient, whereas the energy dispersion has to be interpolated in a bicubic
way. The reason for this is that the integration is very sensitive on the energy dispersion at
minima that highly contribute to the density, e.g. at the I' point. A linear interpolation always
underestimates the contribution at minima and this underestimation is the more pronounced
the larger the curvature of the minimum.

Being a local interpolation scheme, the bilinear interpolation of the probability density
depends on the data of a single patch only. In contrast, we require for the bicubic interpolation
continuity as well as differentiability of the energy dispersion between neighboring patches.
The derivatives of the energy dispersion at the vertices of each patch are determined as for a
two-dimensional spline [62]. At the boundaries of the integration range we choose the boundary
conditions of a natural spline.

4.2.2 Irreducible wedge of the two-dimensional Brillouin zone

The determination of the irreducible wedge is a complicated group theoretical problem that
becomes even worse if strain has to be considered. Here we follow a different approach and
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determine the irreducible wedge by evaluating the subband dispersion £ (kH) at specific points
in the two-dimensional Brillouin zone.

Actually there is only a small set of symmetries that has to be considered for E; (kH),
namely Cs, C4, Cs, Dy, Dy, and Dg. To determine the symmetry of £ (kH) , we evaluate
E; (kH) at selected k|| points and check if Ej; (kH) obeys the corresponding symmetry. The
symmetry group Cs is always guaranteed due to Kramer’s theorem, i.e. £} (k”) =L (—kH).
The remaining rotational symmetries can be easily identified. For this, we choose a reference
point kﬁef that is not invariant under the symmetry operations of the symmetry groups under

consideration, and we calculate a reference spectrum E;Tef = Lk <kﬂef). We apply a rotation

of 60° to kﬂef and calculate the spectrum FE; (Rﬁookﬂef). If E; (R6ookﬂef> is identical to E;ef
we conclude that the dispersion relation obeys (g symmetry. If not, we apply a rotation of
90° to kﬂef and calculate the corresponding spectrum. If £ (Rgookﬁef> is identical to E;ef, the
dispersion obeys Cy symmetry, if not, it only obeys Cy symmetry.

The identification of reflection axes is more involved. For this, we exploit that the Brillouin
zone has the full point symmetry of the point lattice. To construct the Brillouin zone, one
has to draw lines from the k| = 0 lattice point to all other points of the reciprocal lattice.
The perpendicular bisectors of these lines divide the reciprocal space into two half planes. By
taking the intersection of all half planes that include the k| = 0 lattice point we obtain the
first Brillouin zone. To find the axes of reflection it is not necessary to actually construct the
Brillouin zone. It is sufficient to check if one of the connecting lines between the k| = 0 lattice
point and all other points of the reciprocal lattice is an axis of reflection. This is done similarly
to the identification of rotational symmetries, i.e. we apply the reflection that corresponds to a
certain axis to the reference point kﬂef, calculate the spectrum, and compare this spectrum to
the reference spectrum. However, as the number of reflection axes is identical to the number of
symmetry elements of the rotation group, it is sufficient to identify a single axis of reflection. If
the symmetry group of rotations is ), and an axis of reflection is found, the overall symmetry
group is D,,. Otherwise it is C),.

4.2.3 Analysis of the convergence behavior

For the analysis of the convergence behavior of the presented method we have calculated the
contribution of the I'-band to the charge density in a small piece of homogeneously n doped
GaAs for different doping concentrations (10 cm™3, 10?° cm™3) and different temperatures
(4K, 70K, 300K). We have chosen this example as it allows a direct comparison to the
results obtained by an analytical calculation of the charge density according to Equation (1.52).
The simulated structure corresponds to a GaAs slab of 1nm in the direction of (100) and is
discretized on a uniform one-dimensional grid with 0.1 nm grid spacing. This amounts to a
total of 11 grid points. For all doping concentrations and for all temperatures, only the lowest

Temperature [ K] | Doping [em ™3] | Occupation [cm™?]
(a) | 300 10%¢ 1.657013703 x 10*°
(b) | 70 10% 1497683877 x 1013
(c) | 4 10% 1.495012554 x 101

Table 4.1: The results for the analytical calculation of the subband occupation.
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Figure 4.6: Relative error A, as a function of the number of exact k| points Nexact for the
three temperatures 7' = 300 K (squares), T' = 70K (circles), and 7' = 4 K (triangles). The lines
are guides to the eye.

subband in the I'-band is significantly occupied. Hence we use the occupation of this subband
as the criterion for the convergence of the numerical integration. Table 4.1 lists the results for
the analytical integration.

To demonstrate the convergence behavior we determine the relative error A, of the nu-

merical result for the occupation IV, from the analytical result N,. This relative error A,y is
defined by

|N n - N a|

N,
and eventually it is limited by roundoff errors. We analyze the following aspects: (i) convergence
with respect to the number Ne., of k| points where p; (x,k”) and Ej (kH) are evaluated
exactly, (ii) convergence with respect to the number Ny, of additional points where p; (:L', k||)
and E; (kH) are found by interpolation. We also determine the relative error 9, of the numerical
result IV, for a certain number of additional points Niyer from the asymptotic value N2° in the
limit of large Niter- This relative error is defined by

A = (4.16)

|Nn_Nr?o‘

5rel = Nn

We begin by considering A, as a function of Negei. The results for the three different
temperatures (300 K: squares, 70 K: circles, 4 K: triangles) are shown in Figure 4.6. Both axes
of Fig. 4.6 and the following figures in this section are drawn in logarithmic scale. Figure 4.6
shows that the method yields very accurate results: for a temperature of 300 K the relative error
is limited to 107!° due to roundoff errors. The second conclusion that can be drawn from this
figure is the fact that the convergence behavior depends strongly on the temperature. This is
no surprise, as we have already identified the Fermi function as the main source for integration
errors. The Fermi function drops from one to zero over an energy range of the order of kg7
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Figure 4.7: Relative error A, as a function of the number of interpolated kj points Njye, for
the three temperatures 7' = 300 K (squares), 7' = 70K (circles), and T' = 4K (triangles). The
lines are guides to the eye.

If the difference in energies at neighboring k| points is larger than kT or of the order of kT,
the integration error is large even if the change in p; (:U, kH) and in F; (k”) is small.

Figure 4.7 shows that this problem can be solved by an appropriate interpolation of p; (x, k||)
and Fj; (k”) between the vertices of an integration patch. In this figure A, is plotted as
a function N, again for the three different temperatures (300 K: squares, 70 K: circles,
4K: triangles). The addition of k| points where p; (ac,k”) and F; (k”) are determined by
interpolation yields basically no improvement for 7" = 300 K because in this case the energy
spacing of the exact k| points is already smaller then kg7. In contrast, for ' = 70K and
T = 4K, the result can be significantly improved by the addition of interpolated kj points
without a noticeable increase in computational effort.

For determining £ (kH) at the interpolated k|| points we use a cubic interpolation scheme.
Figure 4.8 illustrates that interpolating F; (k”) linearly is indeed not sufficient. The figure
shows the relative error A,y as a function of N for T = 300 K for the cubic interpolation
scheme as well as for a linear interpolation scheme. The expected behavior is that increasing
Ninter should improve the accuracy of the numerical integration, i.e. A, should become smaller.
However, this is the case only for the cubic interpolation (squares). In contrast, for the linear
interpolation (circles), A is increased by several orders of magnitude by the addition of a
single interpolated point and the addition of further interpolated points yields absolutely no
improvement.

A similar analysis for the relative error A, now as a function of Neg.et is shown in Fig-
ure 4.9. Again we consider the case of ' = 300 K. If linear interpolation (circles) is used for
E; (kH), the convergence behavior is worse by several orders of magnitude as compared to cubic
interpolation (squares). For this example, Niper = 3 interpolated kj points have been used.
Also shown in this figure is a comparison between the two patch weighting formulas given by
Eq. (4.12) (triangles down) and Eq. (4.13) (triangles up) both applied assuming Dg symmetry.
Here again, a significant difference in the convergence behavior is obtained. Only using the
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Figure 4.8: Comparison between the relative error A, as a function of the number of in-
terpolated kj points Nier for cubic (squares) and linear (circles) interpolation of E; (k) for
T = 300K. The lines are guides to the eye.
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Figure 4.9: Comparison between the relative error A, as a function of the number of inter-
polated k| points Nier for (i) cubic (squares) and linear (circles) interpolation of E; (kj), (ii)
patch weighting formulas given by Eq. (4.13) (triangles up) and Eq. (4.12) (triangles down).
The temperature is 300 K. The lines are guides to the eye.
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Figure 4.10: The relative error d,q as a function of the interpolated k| points Njyer for 7' =
300 K. This figure shows the quadratic convergence behavior of the integration method. The
lines are guides to the eye.

patch weighting formula given by Eq. (4.13) it is possible to achieve the same level of con-
vergence as assuming non-hexagonal symmetry. For hexagonal symmetry the patch weighting
formula given by Eq. (4.12) yields results that are worse by several orders of magnitude.

Finally, in Fig. 4.10 we show the relative error d,, as a function of Ny . This analysis
illustrates the polynomial order that governs the convergence of the numerical integral. Again
we consider the case of 7' = 300 K. The expected behavior is quadratic convergence in the
spacing of neighboring k; points. This is confirmed by Fig. 4.10: the plotted data points can
be fitted by a straight line with a slope of —2. As both axes in Fig. 4.10 are drawn in logarithmic
scale, this means that d,., approaches zero quadratically.

4.3 A novel method for the charge density calculation in
the 8-band & - p model

For the 8-band k - p model and for all other multi-band k - p models that deal with conduction
as well as valence bands simultaneously (mixed-band k - p models) it is in general not possible
to decide whether a specific eigenstate has to be occupied by an electron or by a hole. In
particular, it is therefore not possible to calculate the electron and hole charge densities in the
usual way simply by occupying the electronic states according to the Fermi-Dirac statistics of
electrons and the hole states according to the Fermi-Dirac statistics of holes.

We have therefore developed a novel method for calculating the charge density for mixed-
band k - p models. For this method, we do not have to classify eigenstates into electron like
or hole like. Instead, we occupy all eigenstates (including the eigenstates that have energies
in the energy range of the valence bands) with electrons according to the Fermi-Dirac statistic
of electrons. Afterwards, we subtract an appropriately calculated positive background charge.
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Neglecting doping and fixed charges, the usual procedure can be summarized as follows:

p(r) =—n(z)+p(z), (4.17)

i.e. the total charge density is the difference of the density p (z) of holes in the valence bands
and the density n (z) of electrons in the conduction band. In contrast, our approach is given
by

p () = —1an () + pyg (7)), (4.18)

where ngy (x) is the electron density of electrons in all bands (conduction and valence bands)
and p,, (z) is the positive background charge.

This approach requires calculating a much larger number of eigenstates, at the moment
restricting the application of the method to quasi-one-dimensional calculations. If in a specific
mixed-band & - p model (as for the 8-band model) the number of valence bands is larger than
the number of conduction bands, it is possible to occupy all non-contributing eigenstates with
holes and subtract a negative background charge. For the 8-band £ - p model this reduces the
number of required eigenstates by a factor of 3.

In the following, we introduce our novel method and we show the equivalence between
occupation with electrons and occupation with holes. For simplicity we neglect doping and
fixed charges for the moment. We consider the case of a heterostructure with two-dimensional
translational symmetry in the plane orthogonal to the growth direction, and we assume that
the Hamiltonian has been discretized using box discretization along the growth direction in real
space on a grid with box integration volumes A; (i = 1,2,..., N). The resulting Hamiltonian
matrix H = H,/, (z” L1 k”) is not Hermitian, but can be represented by the product of a diagonal
matrix D with D;; = A, léij and a Hermitian matrix H’ as follows:

H=D-H. (4.19)

The Hamiltonian matrix still depends on the wave vector k| that describes the free motion of
the crystal electrons in the plane orthogonal to the growth direction. Further, ¢ and i’ denote
indices to the grid points x; and take on the values 1,2,..., N. The indices v and v/ denote
the components of the valence and conduction bands. In total, there are No = Nyg + Ncg
such components. The Nyg valence band components are numbered from 1 to Nyg, the Nog
conduction band components are numbered from Nyg + 1 to Nyg + Ncg. The eigenvalue
equation for the envelope wave functions 1, (x, kH) of the jth subband is then given by

N¢c N
ZZH,,,V(i’,z‘;kH)wg.”)(xi,kH):Ej(ku)wg.”)(xi,k“), j=1,...,N-Ng,  (4.20)

v=1 =1

where F; (k”) denotes the subband dispersion relation. The probability density p; (m, k”) is
given by Equation (4.6). We now determine the electron density n,y (z) of the electrons in all
bands (conduction and valence bands). For this, Eq. (4.1) still holds

N-N¢ 1

nan (z) = ) L / dky p; (v, X)) f (5 (k))) - (4.21)

j=1 Qpz

The summation runs from 1 to N - N¢, i.e. we sum over subbands in the energy region of the
conduction band as well as over subbands in the energy region of the valence bands. The Fermi
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function f (Ej (k”)) depends on the Fermi energy Fr. Using the orthonormality condition for
the wj T, kH)

ZZ¢ (i Ky) 9 (i, Ky ) A = 00 (4.22)

v=1 i=1

we find that the integrated electron density is given by

> () A= (2;2 /Q @k, f (E; (k). (4.23)

The Fermi energy is now determined so that

Nyg - Znall sz 17 (4-24)

which means that the Nyg - N valence subbands have originally been fully occupied. To guar-
antee total charge neutrality

> pla)Ai=0 (4.25)
we therefore find the condition

Qpz
(2m)"

N

=1

Even though the positive background charge p,, () cannot be identified with the positively
charged cores as is possible in tight-binding, the origin of the background charge are those cores.
Since the cores are distributed homogeneously, we assume that p,,, (z;) A; is independent of x;
and given by

QOpz
;) A; = Nyg - N - —=. 4.27
e (1) 84 = N N - 25, (4.27)
For the charge density p () this yields the following expression
R 1 N
7)) = — — @k (p; (v, X)) f (E; (k) — ﬂ) 4.28
p(wi) ; 7 /ssz || (pa( 0 (E; () = 78 v (4.28)

The equivalence between occupation with electrons and occupation with holes is based on
the completeness relation for the 1; (.71;, k”)

N-Ng
Qi

Z wj(”) (331‘, kl\) ¢§-Ul) (mi', kH) = 5VV/K. (4.29)

j=1
By setting v = v/, i = i’ and subsequently summing over v we find

N N-N¢
C

J=1
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Now we use that

N-N¢

1 / ) 1 Nyg
d%k —
Z @) Jay, | N-A; No
1 N, 1 N
= ; / k== - — / Ak ==
(27)" Jas, A (27m)” Jap, A,
N-N¢ N-N¢
1 / ) 1 / ) 1 Nvs
= — A%k p; (25, k) — — A%k ————=
jz:; (27_‘_)2 Qg Il .7( ”) ]z:; (27T)2 Ong l N . Az NC
N-N¢
1 / , ( 1 NVB)
= — A’k ( p; (2, k) — — . 4.31
; @n)? Jo, * j (i k) N-A No (4.31)
For the charge density this yields
e 1 N
CB
p(x;) = / d%k <p. i, k) [1 = f(E; (k))] — —) 4.32
(w:) ; 2 Jo, Tl (s (k) [1= 5 (85 ()] = g1 (4.32)

This expression for the charge density can be interpreted as follows: the overall sign is now pos-
itive, i.e. instead of occupying the subbands with electrons according to f (Ej (kH)) we occupy
the subbands with holes according to 1 — f (Ej (k”)) and we subtract a negative background
charge p,, (v) that is given by

_ 1 Q
Prg (i) = _ENCB N —<2:)ZQ- (4.33)

Equation (4.28) and Eq. (4.32) are equivalent. The decision to use either the one or the
other depends on the number of valence bands Ny and the number of conduction bands Ngg. If
Ncg < Ny as in the case of the 8-band k- p model one should prefer Eq. (4.32) for the following
reason. From a practical point of view it is not necessary to calculate the sum over all eigenstates
as Eq. (4.28) and Eq. (4.32) suggest. This is because the Fermi function drops exponentially
for energies that are larger than the Fermi energy Er by kgT. Therefore, eigenstates with
eigenenergies larger than Er + kg7 hardly contribute to the sum in Equation (4.28). The same
is true for the sum in Eq. (4.32) and eigenstates with eigenenergies less than Fr — kgT. The
number of eigenstates with eigenenergies smaller than FEg is of the order of N - Nyg, whereas
the number of eigenstates with eigenenergies larger than Er is of the order of N - Ngg. For
Eq. (4.32) it is therefore sufficient to determine N - Ngg + n eigenstates, but for Eq. (4.28) one
has to determine N - Nyg + n eigenstates, where n is usually small if compared to N. Thus
N - Nyg+n > N-Ngg+n in the 8band case and accordingly Eq. (4.32) is computationally
less demanding.

Finally we want to note that doping can be included as usual. The charge density is then
given by

p () = —nan () + prg (x) = Ny (x) + Npj () (4.34)

where N (z) and N} (z) are the densities of ionized acceptors and donors, respectively.
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Figure 4.11: A doping superlattice is made of a single semiconducting material with periodically
repeated p and n doped layers. Employing periodic boundary conditions, the calculation of such
a superlattice can be limited to a single period as indicated by the dashed lines.

4.4 Application to doping superlattices

Doping superlattices, in contrast to compositional superlattices, consist of a single semiconduct-
ing material. A superstructure potential is created by periodic n and p doping. The variation of
doping concentrations and doping layer thicknesses offers a wide range for tuning the properties
of doping superlattices as for example the bandgap, free-carrier densities, and resulting from
that, conductivity, luminescence spectra, absorption coefficients, recombination lifetimes etc.

Here we exploit that by varying the doping concentrations, a continuous transition between
a situation with positive spatial band gap and a situation with negative spatial band gap is
possible. This allows us to compare the results of our novel method with the results obtained
with the traditional method at least in the limiting case where both methods are applicable, i.e.
for positive spatial band gap. The calculations in the case of negative spatial band gap yield
the intrinsic charge transfer between the n and the p doped layers. Charge transfer is expected
from qualitative arguments. However, the quantitative calculation of the charge transfer is
a new result because it cannot be obtained using the traditional method for calculating the
charge density.

We have analyzed doping superlattices that consist of GaAs and are alternately n and
p doped with doping layer thicknesses of d, = d, = 10nm and doping concentrations of
Ny =26 x 10¥%cm™3, Np = 5.2 x 10 cm™3 (positive spatial band gap) and Ny = Np =
5.2 x 101 cm ™3 (negative spatial band gap). A sketch of the structure is shown in Figure 4.11.
We have calculated the charge density and the electrostatic potential self-consistently within
the 8-band & - p model. The temperature has been set to T' = 4 K.

For the calculation we have discretized the heterostructure along the (100) growth direction
using a uniform grid with 0.25 nm grid spacing and periodic boundary conditions. This amounts
to a total of 80 grid points for the 20 nm long structure. Using LAPACK, we have calculated
the 168 8-band k - p states that are highest in energy. The energy subband dispersion has been
evaluated at 210 exact kj points in the irreducible wedge (1/8th of the full two-dimensional
Brillouin zone). The Brillouin zone integration has been restricted to 5% of the maximum k
value in the bulk Brillouin zone. A total of 11 iterations were necessary to achieve a converged
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Figure 4.12: Band edges of T' conduction band (dashed curve) and heavy hole valence band
(dotted curve) along the growth axis of the doping superlattice with positive spatial band gap.

The Fermi energy is Er = 0eV.
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Figure 4.13: Charge carrier density along the growth direction for the doping superlattice with

positive spatial band gap. The solid black curve has been calculated using the novel method,

for the dashed white curve the traditional method has been used.
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Figure 4.14: Band edges of I' conduction band (dashed curve) and heavy hole valence band
(dotted curve) along the growth axis of the doping superlattice with negative spatial band gap.
The Fermi energy is Er = 0eV.

self-consistent solution for the charge density and the electrostatic potential.

We begin with the case of positive spatial band gap. Figure 4.12 shows the band edges of the
I' conduction band (dashed curve) and the heavy hole valence band (dotted curve) including
the electrostatic potential along the growth direction. The Fermi energy is Er = 0eV. The
minimum of the conduction band edge is larger than the maximum of the valence band edge,
so that the spatial band gap is positive and amounts to E; = 0.59¢V. One can easily classify
the eigenstates into electron like and hole like. All eigenstates that are in energy above the
minimum of the conduction band edge are electron like eigenstates, all eigenstates that are
in energy below the minimum of the valence band edge are hole like eigenstates. Therefore,
the charge density can be calculated with our novel as well as with the traditional method.
The results for the densities of charge carriers are plotted in Fig. 4.13 (novel method: solid
black curve, traditional method: dashed white curve). The figure shows that the two densities
coincide. This confirms that our novel method yields the same results as the traditional method
in cases where both methods can be applied.

We now turn to the case of negative spatial band gap. Figure 4.14 shows the band edges of
the I" conduction band (dashed curve) and the heavy hole valence band (dotted curve) including
the electrostatic potential along the growth direction. Again, the Fermi energy is Er = 0eV.
Now, the minimum of the conduction band edge is less than the maximum of the valence band
edge, so that the spatial band gap is negative and amounts to £, = —0.24eV. A classification
of eigenstates into electron like or hole like is no longer possible and the traditional method fails
in calculating the charge carrier density. With our novel method it is still possible to calculate
the density of charge carriers as shown in Figure 4.15. The figure shows a transfer of negative
charge from the p doped layers into the n doped layers. This charge transfer can be explained
in detail by means of the dispersion relation of the subbands that is shown in Figure 4.16.
The subband dispersion exhibits an anti-crossing of the lowest subband above the Fermi energy
(denoted upper subband in the following) and the highest subband below the Fermi energy
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Figure 4.15: Charge carrier density along the growth direction for the doping superlattice with
negative spatial band gap. This result was obtained using the novel method, the traditional
method cannot be applied in this case.

(denoted lower subband in the following). This anti-crossing is shown in detail in the inset (d)
of the figure. For large values of k| we can undoubtedly assign the property electron or hole
to either of the subbands. The upper subband is electron like, the lower subband is hole like.
Further, inset (c) shows the probability distribution of the eigenstate of the upper subband
for ‘kH‘ = 0.05 - 27 /a. The probability density is localized in the n layers that form potential
wells for electrons. However, at the anti-crossing the classification of the upper and the lower
subband into electron and hole is no longer possible. This can be clearly seen from inset (b) that
shows the probability distribution of the eigenstate of the upper subband for a k| point near the
anti-crossing. Keeping in mind the periodic boundary conditions, the probability distribution
shows two distinct maxima that correspond to localization in the n layers as well as in the p
layers. This eigenstate is an example of the hybridization of conduction band and valence band
states and makes the classification into electrons and holes impossible. At the zone center, the
classification that holds for large values of k|| is reversed. As shown in inset (a), the probability
density of the eigenstate of the upper subband is now localized completely within the p layers
that form potential wells for holes. This means that for k| = 0 an eigenstate that has its origin
in the valence bands is higher in energy than an eigenstate that has its origin in the conduction
band. Because of this, the energy of the eigenstate originating from the valence band is larger
than the Fermi energy, its occupation therefore lacks electrons and creates a positive charge
distribution. Since the probability density of this state is mainly localized in the p layers, we
thus observe a positive charge distribution in the p layers. In each case, the opposite is true for
the eigenstate originating from the conduction band. We therefore observe a negative charge
distribution in the n layers. Altogether this results in the observed charge transfer.

This argument shows clearly that every method based on a classification of eigenstates or
even subbands must fail in this situation. First, it is not possible to assign the properties
electron and hole unambiguously to a subband. Second, at certain k; points as the one of the
anti-crossing, it is not even possible to assign the properties electron and hole to an eigenstate.
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Figure 4.16: kj subband dispersion relation in the (010) direction. The insets (a), (b), and (c)
show the probability density of the eigenstates of the lowest subband above the Fermi energy Ep
for three different values of &y (ak)/2m = 0,0.02,0.05). The dispersion exhibits an anti-crossing

of the lowest subband above the Fermi energy and the highest subband below the Fermi energy
(inset (d)).

To summarize, we have shown that in the case of positive spatial band gap, the result for the
density of charge carriers calculated with our novel method is identical to the result obtained
by the traditional method. However, with our novel method we can also address the case of
negative spatial band gap. This has allowed us to analyze the charge transfer between the p
and the n doped layers quantitatively and we could explain this charge transfer in detail by
the subband dispersion relation of the lowest subband above the Fermi energy and the highest
subband below the Fermi energy.

4.5 Summary and Outlook

In this chapter, we have presented a novel method for the calculation of the charge carrier
densities of semiconductor heterostructures by numerical integration over the two-dimensional
Brillouin zone. We have compared the method with the results obtained by analytical in-
tegration for homogeneous GaAs. By this comparison we have shown that our method yields
accurate results for the charge carrier densities with a moderate computational effort. Based on
the method for the calculation of the charge carrier density, we have presented a second method
for calculating the charge carrier density for mixed-band k - p models that does not require the
classification of the electronic states into hole like and electron like. We have argued that such
a classification fails for broken gap structures so that the traditional method for calculating the
charge carrier densities is no longer applicable. We have demonstrated the method by quanti-
tatively calculating the intrinsic charge transfer for a doping superlattice with broken gap. The
method can be easily integrated into the highly efficient predictor-corrector approach for the
charge self-consistent solution of the coupled Schrodinger and Poisson equations presented in
Chapter 2.
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In the future, the presented scheme for the fully charge self-consistent calculation of the
electronic structure of broken gap heterostructures within the 8-band £ - p approximations
allows for the accurate prediction of optical properties such as transition energies and absorption
coefficients of type II infrared lasers and infrared detectors.
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Chapter 5

A novel method for ballistic quantum
transport in entangled two-particle
systems

5.1 Introduction to ballistic quantum transport

A conductor shows non-ohmic behavior if its dimensions are smaller than certain characteristic
lengths: the mean free path and the phase-relaxation length [21]. If the length of a conductor
becomes shorter than the mean free path the conductance approaches a limiting value. This
classical ballistic limit has still nothing to do with quantum mechanics. Quantum mechanics
becomes important not until the dimensions of the conductor are smaller than the phase-
relaxation length and interference-related effects come into play. In present day high-mobility
semiconductor heterostructures such as modulation doped GaAs/AlGaAs heterojunctions or
quantum wells, mean free paths and phase-relaxation lengths of the order of 3040 pm are
relatively easy to obtain at low temperatures. Thus ballistic quantum transport plays an
important role in many mesoscopic transport experiments.

The theoretical approach that has proven to be most useful in describing mesoscopic trans-
port was introduced by Landauer [63, 64] in 1988. The roots of this approach date back even
to the early 1930s [65, 66]. A generalization to multi-terminal devices including magnetic fields
was proposed by Biittiker [67, 68] and is generally referred to as Landauer-Biittiker formalism.
The essential idea behind the Landauer-Biittiker formalism is that the current through a ballis-
tic conductor is determined by the probabilities of the electrons to be transmitted or reflected.
The contacts of the conductor are assumed to be large electron reservoirs in equilibrium that
each can be described by its own Fermi distribution with chemical potential p. The difference
in chemical potentials between the contacts is equal to the externally applied bias voltage. By
the Landauer-Biittiker formula, these relations are expressed as follows:

Ly =2 [ AT (B) [F (1. E) ~ f (1. B)] (5.1)

h
where [, is the current between contact p and contact ¢, T}, (F) is the corresponding trans-
mission probability, ., and 1, are the chemical potentials in contacts p and ¢, and f (i, E) is
the Fermi distribution function. Thus the Landauer-Biittiker formalism reduces the problem of
calculating the ballistic current in a mesoscopic device to the determination of the transmission
probabilities of an open device connected to reservoirs.

67
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A typical problem where the Landauer-Biittiker formalism can be successfully applied is
ballistic quantum transport. Here, the transmission probabilities can be determined using
quantum mechanical scattering theory. For this, one first calculates the scattering matrix .S of
the system, and the transmission probabilities 7}, are then obtained according to

qu = |Spq‘2- (5-2)

Several numerical methods have been developed to determine the scattering matrix for
quantum devices. The transfer matrix method [69, 70] as well as its generalizations to multi-
dimensional systems [71, 72] and to multi-band Hamiltonians [73, 74| follow the direct ap-
proach where the scattering matrix is determined from the solutions of the Schriodinger equation
with scattering boundary conditions. An improved method (quantum transmitting boundary
method) for applying the scattering boundary conditions was introduced in Reference [72].
This method still requires the repeated solution of a linear system of equations with dimen-
sions proportional to the size of the device, but has been successfully applied to tight-binding
and multi-band k - p calculations in one dimension [73-76] and single-band calculations in two
as well as in three dimensions [72, 77-79]. In the R-matrix method [80] the scattering matrix
is determined from eigenfunctions of a closed system, the so called Wigner-Eisenbud functions.
This method is widely used in atomic physics but has not been applied to semiconductor de-
vices with the exception of the works by Wulf et al. [81, 82]. A very efficient and widely used
method is the recursive Green’s function method [83, 84]. It has been successfully used for
two-dimensional [85, 86] as well as small three-dimensional [87] devices. In general, Green’s
function methods benefit from the well developed theory of Green’s function. A particular
advantage of the recursive Green’s function method is that it yields the retarded Green’s func-
tion as well as the lesser Green’s function. The latter is required if inelastic scattering is to
be considered. The main disadvantage of the method is its limitation to devices that can be
separated into discrete slices. This often restricts the number of contacts to only two. A recent
and also very efficient method is the contact block reduction (CBR) method [88]. The CBR
method can be applied to arbitrarily shaped devices with arbitrary number of contacts in up to
three dimensions. Extensions to multi-band Hamiltonians as well as to charge self-consistent
calculations have been demonstrated recently [6, 22].

The presented methods have in common that many-particle effects are treated only per-
turbatively within the Hartree approximation or the local density approximation (LDA). In
particular, this means that many-particle correlation effects such as entanglement cannot be
discussed. Entanglement, however, is the key point in quantum information processing, as any
non-trivial two-qubit quantum gate is based on entanglement. We have developed a novel nu-
merical method for ballistic quantum transport based on the Green’s function approach that
allows one to treat the interaction between two particles non-perturbatively. With this method
it is therefore possible to study many-particle correlation effects such as entanglement. We
show that in doing so, we can still benefit from the high computational efficiency of the CBR
method.

In the following, we first provide a brief summary of the Green’s function formalism by an
introduction to the CBR method. Then, we present our novel method for ballistic quantum
transport in entangled two-particle systems and we show that we can still benefit from the
high computational efficiency of the CBR method. In Sec. 5.4 we derive interaction matrix
elements for the Coulomb interaction to be used in the particular application of the method
that is discussed in Chapter 6.
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5.2 Contact block reduction method

Reduction to the contact block

In the following, we introduce the terminology and setup the notation that is used throughout
this chapter. We denote by the term "device" a finite n-dimensional (n = 1,2, 3) region that is
coupled to reservoirs by an arbitrary number of leads. The device may be under applied bias
and contain some spatially varying potential. The total Hamiltonian of the system, including
the device and the leads, can be written in symbolic matrix form

H 0 0 W

0o -. 0 :
Hyo = : 5.3
ot 0o 0 H, W (53)
wi ... wl H°

where H, represent the Hamiltonian of lead p, the Hamiltonian H° corresponds to the device
region, and W), is the coupling between the device and thislead (p = 1, ..., L). The leads (acting
as reservoirs) are semi-infinite and therefore, the total Hamiltonian H is infinite dimensional.
This infinite dimensional Hamiltonian can be reduced to an effective (non-hermitian) finite
dimensional Hamiltonian H = H® + ¥ that describes the open device. In this formulation, the
influence of the leads is included through a finite-dimensional operator ¥ = X! + - - . + £F, the
sum of the complex contact self-energies ¥*. In the following, 3 is called the total self-energy.
The Hermitian Hamiltonian H° represents the decoupled device, i.e. the device with no coupling
to the leads. In the ballistic case, i.e. if the Hamiltonian H does not contain scattering terms,
all observables of interest can, in principle, be calculated from the retarded Green’s function
G of the open device, which is defined by

~1

Gl=(E-H)'=(E-H"-Y) (5.4)

The retarded Green’s function can be obtained from the Green’s function G° of the decoupled
device by the Dyson equation
Gf = (1-a6"%)" v (5.5)

The Green’s function G is defined by
"= (E—H+in)™", n—0% (5.6)

and can be calculated with the help of its spectral representation in terms of the eigenstates
|} of the decoupled device Hamiltonian H°

o la)fal .
G _;E—ga‘i‘in’ T/ 0 ’ (57)
HO|a) = ¢, |a). (5.8)

The direct evaluation of G® according to Eq. (5.5) requires the inversion of a large matrix
that is proportional to the number of grid points N of the device. Practically, this is impossible
in three spatial dimensions and can be quite demanding even in two spatial dimensions. The
essence of the CBR method consists in the realization that the determination of G* from G°
and ¥ actually requires only the inversion of a matrix that is proportional to the number of
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grid points N¢ that connect the device with the leads. In three spatial dimensions, N¢ is of the
order of N%/ ®_ The most convenient derivation of this result is obtained by dividing the device
into Np = Ny — N¢ interior grid points (2p and N¢ contact grid points 2¢ that connect the
device with the leads. Thus the total set of grid points is given by 2 = Qp U Q. The total
self-energy Y. vanishes at all interior grid points as each contact self energy is non-zero only
at grid points belonging to the respective contact. We are therefore allowed to represent ¥ in
block-diagonal matrix form as follows:
Yo O
Y= ( 0 OD) . (5.9)

The submatrix Y is termed the contact block of ¥ and is a small square matrix of dimension N¢.
It is given by the sum of all contact blocks ¥, ..., 3L of the contact self-energies X!, ... %L,
The large square null-matrix 0p corresponds to the interior grid points and is of dimension Np.
Analogously to ¥ we decompose the Green’s function of the decoupled device into blocks

Go GO
GO = ( C CD) . 5.10
e G (510)

Note again that G% is a small square matrix of dimension N¢, whereas GY, is a large square
matrix of dimension Np. Now we define the matrix A by A = 1 — G°% so that the retarded
Green’s function is given by G¥ = A7'G°. For the matrix A, we again employ the introduced
decomposition into blocks

B Ao 0
A= (—G%CZC 1D> (5.11)
where Ac = 1¢ — G23¢. The key point is that the inverse of A can be given explicitly in terms
of the inverse of A¢x
Al = Ad! 0 (5.12)

In addition, we recognize that A and its inverse possess the same structure. Having inverted
only the small square matrix Ac (the contact block of A), we can now calculate any block of
the retarded Green’s function according to

6"~ (o sn208 o coosindd o) (5.13)
GpeXcAc Go +Gpe GpeXicAs Gep + G
In particular, the contact block of the retarded Green’s function is given by

GE = AZ'GY. (5.14)

Determination of the transmission function

The transmission functions follow from the retarded Green’s function according to the Fisher-
Lee relation [89]

S = —0Omn + ihn/Umu, GE . (5.15)
For multi-moded leads, m and n indicate the individual modes and v,, and v, denote the

corresponding phase velocities. Together with Eq. (5.2) the Fisher-Lee relation yields the
transmission between lead p and lead ¢

Tpg (E) =Tr F%Ggrchng7 p# 4 (5.16)
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Ty (B) = Tr (1o —iT2GE) (1c —iTLGEY' . p=q¢, (5.17)
where [P = 4 (Ep — ZPT). Note that only the contact blocks of the matrices I'”, I'Y, and G
contribute to the transmission functions as the Hermitian matrices I'? have the same structure
as the contact self-energies P and therefore vanish at interior grid points.

Determination of the particle density

For an open system connected by leads to reservoirs with distribution functions f, (E) (p =
1,...,L), it has been shown in Ref. [90, 91] that the particle density at grid point i can be
expressed in the following form

L
1
i=— [ dE E) [GRrrGHY . 5.1
ni = ;f;x ) [ B (5.18)
From a straightforward calculation one obtains

n; = % / dE ;f” (E) [Gﬁ‘éf’é (Gﬁ?)*} (5.19)

K2

where X = C for i € Q¢ (contact grid points) and X = DC for i € Qp (interior grid
points). A more efficient expression for the calculation of the particle density can be found in
References [6, 22].

Approximations

The following two approximations are customarily used along with the CBR method. Firstly,
the Green’s function of the decoupled device G° is represented by a reduced number of eigen-
states of the decoupled device Hamiltonian H° instead of the full set [88]. Thereby the proper
choice of boundary conditions for the decoupled device Hamiltonian (von Neumann boundary
conditions instead of Dirichlet boundary conditions) helps to improve the results of this ap-
proximation quite drastically. The second approximation concerns the number of lead modes
that are taken into account in the case of multi-moded leads [22]. The matrix A¢, that has
to be inverted, has the dimension of the number of contact grid points Ng, which can still
be quite large at least for three spatial dimensions. However, the size of Az can be further
reduced if a change of basis is performed on the real space matrices G% and ¢ expressing G%
and Y in terms of the lead modes. In doing so it proves to be sufficient for the calculation
of the transmission function 7}, (£) up to a maximum energy FEy,.x to take into account only
those lead modes in leads p and ¢ that are propagating for energies below ... In most cases,
this approximation allows one to grossly reduce the numerical effort in calculating the inverse
of Ac without a significant change in the resulting transmission function. This is indeed a
crucial factor that enables one to calculate the ballistic quantum transport also for realistic
three-dimensional devices with large contact areas.
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5.3 Novel method for ballistic quantum transport in en-
tangled two-particle systems

Two-particle Green’s function

In the following, we extend the CBR method to the case of an open device that describes a
system of two interacting, distinguishable particles. We restrict ourselves to the case that only
one of the two particles contributes to the transport and the other particle is bound. We further
assume that the interaction is negligible outside the device. The total Hamiltonian of the system
is then identical to Eq. (5.3) except for H°, which now becomes a two-particle Hamiltonian.
H?Y is composed of the single-particle Hamiltonians HY and H,, and the interaction term Vi,

H® = HY + Hy + Vis. (5.20)

HY as well as H, are Hamiltonians of the decoupled device, but only the particle described
by HY is eventually coupled to the leads. The coupling of HY to the lead Hamiltonians is
treated in the same way as for Eq. (5.3) yielding an effective (non-hermitian) finite dimensional
two-particle Hamiltonian

H=H)+Y+ Hy+Vip=H"+%. (5.21)

Here again, we first determine the two-particle Green’s function G° of the decoupled device by
means of its spectral representation Equation (5.7). Then we calculate the two-particle Green’s
function G of the open system according to the Dyson equation. In the following, we show
that the same decomposition of the matrices 3, G°, and G is applicable as in the case of the
CBR method for a single particle. First, we note that the self-energy X is given by the following
tensor product

where Y; is the total self-energy of the first particle. The reason for this representation of the
self-energy ¥ is that only the particle described by H? is coupled to the leads. The two particles
are distinguishable, which in this case means that they are localized in separate parts of space.
Thus we divide the total set of grid point {2 into two subsets

where §2; is the subset of grid points for particle 1, €25 is the subset of grid points for particle 2.
The total number of grid points is again denoted by Nz, the number of grid points in subsets 2,
and (), are denoted by Ny and Ny, respectively. Further, we decompose €); into Np interior grid
points {2p and N¢ contact grid points ¢ as in the previous section so that we can represent

Y, as follows
S = (230 0 ) (5.24)

01,0

Y= (%C 0?3) (5.25)

with ¥¢ = 3¢ ® 12 and Op = 0;p ® 1. Thus in Eq. (5.25) ¥ is formally identical to
the expression given in Eq. (5.9). Note, however, that ¥ is a square matrix with dimension

and X can be written according to



5.3. NOVEL METHOD FOR BALLISTIC QUANTUM TRANSPORT IN... 73

N¢ x Ns. In close analogy to the previous section, we decompose the two-particle Green’s

function of the decoupled device
G2 GO
GY = ( C CD) , 5.26
GYe GY (5.26)

define the matrix A by A = 1 — G°Y so that the retarded two-particle Green’s function is given
by G = A~1G°, and apply the decomposition to A

Ao 0
A= 5.27
(_GODCEC 1D) ) ( )
Ac =1¢ — Go3¢. (5.28)

From the previous section it is now obvious that to obtain the retarded two-particle Green’s
function G according to the Dyson equation it is sufficient to calculate the inverse of Ac. The
retarded two-particle Green’s function is then given by

=\ GheZeAG Gl + Ghe GTeA Gy +GY) |

Thus, by means of the presented method, the numerical effort for calculating G is reduced
from the effort of inverting a square matrix of size N; x Ny to the effort of inverting a square
matrix of size Ngo X Na.

The two-particle Green’s function G° of the decoupled device is determined by means of
its spectral representation Equation (5.7). Here we make use of the same approximation as
described in the previous section and take into account only a reduced set of eigenstates. This
set of eigenstates is determined as follows: First, a certain number of the lowest eigenstates of the
closed system’s single particle Hamiltonians HY and H, are calculated. Then, the interaction
V19 is diagonalized in the product basis of these single-particle eigenstates. Having at hand
single-particle eigenstates of HY and Hy, it is possible to represent the matrices X, G°, and
G® in a mixed basis of position eigenstates of particle 1 and the subset of N;'*" lowest energy
eigenstates |ag) of particle 2 (Hs |ae) = €4, |a2))

2 (i, J, a, 05) = (il (2| B]5) [0) (5.30)

G° (i, j, g, ) = (i] (o] G°1;) |ay) , (5.31)

G (i, J, az, a) = (i] (2] G ;) |ady) (5.32)

where 7,7 = 1,...,N; and ay,ay = 1,..., Ny'*". The decomposition into the contact block

and the block of interior grid points affects the indices ¢ and j only. Thus, from the change of
basis for the second particle from position eigenstates to the reduced set of energy eigenstates,
it follows that the square matrix A¢ is reduced in size from Ne X Ny to only Ne x NS&™.
Note that a direct diagonalization of the two-particle Hamiltonian H° requires diagonalizing a
square matrix of size N; x N,. For three spatial dimensions, where typically N;, Ny ~ 10, this
is far beyond any imaginable possibilities of today’s and also future computers The storage of
only the diagonal of the matrix of H° would require 10 Tb of memory.

A further reduction in the size of the square matrix A is possible by means of the reduction
of the number of lead modes as described in the previous section. The total number of lead
modes Npoqes can usually be chosen to be much smaller than the number of contact grid points

N¢. The size of the square matrix Ao is then given by Npodes X N;igen.
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Determination of the transmission function

In the following, we represent G& in the mixed basis of position eigenstates of particle 1 and
energy eigenstates of particle 2

GE (i, az,0h) = (il (02| GE1j) lab), 4, € Qey azy0p =1,..., N3*™. (5.33)

In this form, G& represents the probability amplitude for the propagation of particle 1 from
position z; to position z; accompanied by a transition of particle 2 from eigenstate |a4) to |)).
For p # ¢, the expression

T2 (B) = Tr TLGETLG (5.34)

therefore yields the probability for the transmission of particle 1 from lead ¢ to lead p under
the condition that initially particle 2 is in state |a)) and ends up in state |ay). For p = ¢ the
corresponding expression is given by

T2 (E) = Try (1o — iTBGE) (10 — iT4GE)" (5.35)

Note that the trace in Eq. (5.34) and Eq. (5.35) is taken only with respect to the position of
particle 1. If the final state of particle 2 is not determined, the corresponding transmission
probability is obtained by summing over all final states of particle 2

Toz =) Toxes. (5.36)
a2

5.4 Interaction matrix elements

The two lowest lying quantum states of a tunneling coupled single electron double quantum dot
can be described by a very simple model Hamiltonian that takes into account only the energy
splitting A between the ground states of the isolated quantum dots and the tunneling coupling
t between the two quantum dots. This Hamiltonian is given by

_A _t
HD:< ? A?). (5.37)
2

2

Typical values for A and t are of the order of 10 peV [92]. In our two-particle calculations,
we use this model Hamiltonian for the subsystem of the second particle instead of a realistic
three-dimensional model because of the following reasons. First, the properties of the double
dot system can be characterized more easily in terms of only two parameters. Second, the
calculation of the interaction matrix elements between the two particles is numerically less
demanding. However, we want to emphasize that our method for the calculation of the ballistic
current for an interacting system of two distinguishable particles is not in principle limited to
treating the second particle by a model Hamiltonian.

The eigenstates of H are linear combinations of the ground states |0) and |1) of the two
isolated quantum dots

|B) = hpo|0) + hpi[1), (5.38)
|A) = hao|0) + hat [1), (5.39)
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with real valued coefficients hxy (X = A, B, k = 0,1). Here, |B) denotes the bonding eigenstate
and |A) denotes the anti-bonding eigenstate. The corresponding eigenenergies are

1
Bp =5V + A2, (5.40)

1
Ea=gVE+ A2 (5.41)

The coefficients hxy can be conveniently written in terms of Exy (X = A, B)

A —2F
hxo = X , (5.42)

\/t2 + (A —2Ex)?
t

hyy = . (5.43)
Ve (A - 2Ey)?

For vanishing A, |B) and |A) become (|0) + |1)) /v/2 and (— [0) + |1)) /v/2, respectively. For
vanishing ¢, |B) and |A) reduce to |0) and |1). We assume that the charge distribution of
the electron in the ground states of the isolated quantum dots can be approximated by point
charges at positions qg and q;. With the Coulomb interaction

e? 1

- 47T€7=50 ‘Xl — X2|

Via (5.44)

as the interaction term between particle 1 at position x; and particle 2 at position x5, we
find the following expression for the interaction matrix elements between the single-particle
eigenstates |ay), |o)) (HY |a1) = €4, |a1)) of particle 1 and single-particle eigenstates | X), |Y)
(X,Y = A, B) of particle 2

(Vie)apar ey = {aa] (X[ Via]af) V)
2

T @, 0y 0 Y (5.45)

" Adre, g X =]

where 1), (x) denotes the eigenstate |a;) in the position representation.

5.5 Summary

In this chapter, we have developed a novel method for the ballistic quantum transport in en-
tangled two-particle systems. The method allows for the non-perturbative treatment of the
Coulomb interaction between two distinguishable electrons. Therefore, many-particle correla-
tion effects such as entanglement can be studied. The method is based on the contact block
reduction (CBR) method. Approximations such as the mode space reduction and the incom-
plete spectral representation of the closed system Green’s function that render the CBR method
to be highly efficient are still valid in our novel method. Thus, our novel method is also highly
efficient in terms of computational effort and it therefore allows us to study the ballistic quan-
tum transport in entangled two-particle systems also for realistic, three-dimensional devices.
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Chapter 6

Prediction of entanglement detection
by I-V characteristics

6.1 Introduction

The idea to build quantum computers based on semiconductor nanostructures is at least as
appealing as it is demanding. In contrast to most other proposals [93], semiconductor based
concepts for quantum information processing promise a high degree of scalability because of the
highly developed technology and great experience in the fabrication of semiconductor devices.
However, the implementation of only a single qubit proves to be more difficult in semiconductors
than it is for most other approaches. The reasons for this are the short decoherence times and
strong interactions between elementary excitations in solids [94]. Already in 2001, a proof of
principle of Shor’s factoring algorithm was given by means of a 7-qubit NMR quantum computer
[3]. But only recently the first single- and two-qubit quantum operations in semiconductors
have been demonstrated with spin qubits [4, 5].

At liquid helium temperatures and below, electrons in a two-dimensional electron gas
(2DEG) formed at the interface of a GaAs/AlGaAs semiconductor heterostructure show mean
free paths as well as phase-relaxation lengths of the order of 3040 um [21]. Metal gates on
the surface of such heterostructures can be used to define regions, where the motion of the
electrons is confined to zero (quantum dots) or one dimension (quantum wires). Bertoni et al.
[95] and Ionicioiu et al. [96] proposed a scheme for quantum computation in semiconductors
that exploits the long mean free path and phase-relaxation length for electrons propagating
through such quantum wires (QWRs). In their approach, a single-electron wave packet propa-
gates through either of two parallel quantum wires. One of the quantum wires represents the
state |0), the other quantum wire represents the state |1). A single-qubit rotation gate can
be realized by a small opening that couples the two quantum wires. Such coupling windows
between two quantum wires have been studied theoretically as well as experimentally by several
authors [78, 95, 97-100]. The size of such a gate is one to two orders of magnitude smaller
than the mean free path and the phase-relaxation length. This approach should therefore al-
low applying even multiple quantum gate operations to a qubit, despite the generally short
decoherence times in solids. Except for Ref. [78] the theoretical analyses are limited to simple
non-selfconsistent models. In Ref. [78] a self-consistent model is used, but the calculation is
done only quasi three-dimensional.

Universal quantum computation demands not only for single-qubit gates, but also for two-
qubit gates [101]. Two-qubit gates in turn are intrinsically tied to entanglement. A possible

77
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way to entangle two quantum wire qubits is to exploit the Coulomb interaction. For this, two
pairs of quantum wires are brought close to one another so that the electrons in the quantum
wires can interact in a controlled way. However, the main disadvantage is that the injection
of the electrons into the quantum wires has to be timed very accurately on a timescale of
less than a picosecond. The possibilities to entangle two qubits as well as to perform two-
qubit gates based on this idea has been studied theoretically in several articles [102-105] by
means of simple models. Akguc et al. [98] and Reichl and Snyder [106] proposed to consider
stationary scattering states of quantum wire qubits rather than wave packets and developed
several analytical models to describe the entanglement of the qubits. They also studied complex
networks and considered generalizations of the concept of stationary quantum wire qubits to
higher dimensional spaces [107].

This stationary picture is also the basis of the approach that we employ here. Our objective
however is the analysis of realistic, fully three-dimensional models of quantum wire based
single- and two-qubit quantum gates that result in conceptually simple and experimentally
realizable proposals of novel semiconductor devices for quantum information processing. Here
we present a theoretical analysis of a ballistic GaAs/AlGaAs quantum device for the controlled
generation and detection of entanglement between an all-electric Mach-Zehnder interferometer
and an electrostatically defined single electron quantum dot. The Mach-Zehnder interferometer
is realized by two electrostatically defined QWRs that are connected by two coupling windows.
In contrast to electronic Mach-Zehnder interferometers based on quantum Hall edge channels
[108], no magnetic fields are employed. We calculate the ballistic I-V characteristics of the
fully three-dimensional, open device using a single band effective mass description for the
electronic Hamiltonian including the Hartree potential self-consistently. The interferometer
can be employed as a fully controllable single-qubit gate for quantum wire qubits.

To calculate the entanglement between the interferometer and the double quantum dot, we
have developed the Green’s function method presented in the preceding chapter that allows
us to calculate the ballistic current of the entangled system for a realistic, three-dimensional
device structure including the Coulomb interaction non-perturbatively. In addition, we have
also developed a dynamic, analytical model of the device. This allows us to show that the
entanglement can be determined by measuring the DC I-V characteristics of the interferometer
and that the device can be employed as an externally controllable two-qubit gate.

This chapter is organized as follows: In Sec. 6.2 we first address the topic of single-qubit
gates and present a concrete model of the electronic Mach-Zehnder interferometer in terms of
its geometry, material composition, doping profiles, and applied bias voltages. In the process
of working out this model, we have always kept in mind present-day technological possibilities.
We show the operation of the Mach-Zehnder interferometer as a single-qubit gate for propa-
gating electrons by numerical calculations of the DC I-V characteristics of the device. Further,
we discuss the components of the interferometer that are most critical in view of fabrication
precision. In Sec. 6.3 we turn to two-qubit gates and present our novel quantum transport
device that allows for the generation and detection of entanglement between a quantum wire
qubit and a double quantum dot qubit. We show the results of our numerical calculations of
the DC I-V characteristics for the proposed device. We discuss that the degree of entanglement
can be controlled by external gates and can be determined in a straightforward manner from
the DC I-V characteristics. In Sec. 6.4 we present the analytical model of the device and derive
the relation between the I-V characteristics and the degree of entanglement that we use for the
interpretation of the results in Section 6.3. The chapter is concluded by a summary.
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(a) (b)

Figure 6.1: Schematic views of the proposed all-electric Mach-Zehnder interferometer. (a) The
2DEG in an AlGaAs/GaAs heterostructure (green/blue) is locally depleted by external metal
gates (gray) to form two parallel quantum wires (red) that are coupled by two potential wells
in the separating barrier. (b) A small bias voltage V' is applied to the upper left terminal. The
resulting currents Jy and J; that flow to the upper and lower right terminals are measured as
a function of the phase gate voltage V. For clarity, both figures are not drawn to scale.

6.2 All-electric Mach-Zehnder interferometer

6.2.1 Introduction

In optics, Mach-Zehnder interferometers are used to determine phase shifts as well as for the
modulation of light intensities. An incoming beam of light is split by a beam-splitter. To one
of the resulting beams, a phase shift is applied and at a second beam-splitter the two beams
interfere. The intensities of the two beams then depend on the applied phase shift. The same
interference experiment can also be done with electrons. However, because of the fermionic
character of electrons in contrast to photons, an electron can interfere only with itself. A
quantum optical formulation of the Mach-Zehnder interferometer in terms of photonic creation
and annihilation operators that also discusses the case of particles with fermionic character is
given in Reference [109].

Here we study the theory of semiconductor based electronic Mach-Zehnder interferometers
and their application as single-qubit gates. A schematic view of such a Mach-Zehnder inter-
ferometer is shown in Figure 6.1 (a). The device is based on the two-dimensional electron gas
(2DEG) that forms in the quantum well of a modulation doped AlGaAs/GaAs heterostructure.
The 2DEG is locally depleted by the application of negative voltages to metal gates on top
of the heterostructure. By this, two parallel quantum wires are formed in the 2DEG. These
quantum wires are connected by two coupling windows that are realized as potential wells in the
barrier separating the quantum wires. For specific energies, the coupling windows between the
quantum wires act as beam-splitters and the quantum wire network behaves as an electronic
Mach-Zehnder interferometer. In contrast to electronic Mach-Zehnder interferometers based on
quantum Hall edge channels [108], no magnetic fields are employed. We therefore use the term
all-electric Mach-Zehnder interferometer. In particular, this also means that the phase shift
of the electron wave function between the two quantum wires is controlled electrostatically by
phase gates. These are additional gates on top of the quantum wires, but can also be combined
with the gates used to define the quantum wires.

The Mach-Zehnder interferometer is operated under ballistic transport conditions. By ap-
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Figure 6.2: (a) GaAs/AlGaAs heterostructure with a single 10 nm wide GaAs quantum well
as used in the calculation of the Mach-Zehnder interferometer. GaAs is shown in black,
Alg37Gag g3As is shown in gray. The GaAs cap layer is 5 nm thick. A silicon ¢ doping layer
with a concentration of 2.5 x 102 cm™2 is located 25 nm below the surface (dashed line). (b)

Top view of the Mach-Zehnder interferometer showing the side gates (black) and the mid gates
(dark gray).

800 nm

plying a small DC bias voltage V' as shown in Fig. 6.1 (b) between the upper left and the
remaining three contacts, current flows predominantly from the upper left to the upper right
contact (Jy) and from the upper left to the lower right contact (J;). The ratio of Jy and J;
depends primarily on the voltage V; that is applied to the phase gate.

6.2.2 Numerical Details

For the discretization of the all-electric Mach-Zehnder interferometer we have used a nonuniform
tensor product grid with a total of 6 x 10® grid points. The Schroédinger equation has been solved
on a subset of 1.5 x 10° grid points. For a converged result of the equilibrium charge density
and the electrostatic potential, it was sufficient to determine the 250 eigenstates that are lowest
in energy. From these 250 eigenstates, the occupation of the ones highest in energy is smaller
than the occupation of those lowest in energy by eight orders of magnitude. The converged
result was obtained by a total number of 12 predictor-corrector steps. For the calculation of the
transmission probabilities we have taken into account the same 250 eigenstates to determine
the retarded Green’s function of the closed device. Further, we have taken into account the
lowest 5 transversal modes in each of the four leads.

6.2.3 Results

We now turn to the results for the self-consistent calculation of the I-V characteristics of
the all-electric Mach-Zehnder interferometer. The calculations in this section are based on a
GaAs/AlGaAs heterostructure with a single 2DEG. This heterostructure is depicted in Fig-
ure 6.2 (a). It consists of a 5nm thick GaAs cap layer, 45nm Alj 37Gagg3As, and 10 nm GaAs
(2DEG layer) followed by 2 pm Alg3;GaggsAs (substrate). A silicon ¢ doping layer with a
concentration of 2.5 x 10'2 cm ™2 is located 25 nm below the surface. The electron sheet density
in the 2DEG layer has been calculated to be 2.4 x 10! cm™2 for the unstructured sample at a
temperature of 4 K.

Figure 6.2 (b) shows a top view of the Mach-Zehnder interferometer with the layout of
the metal gates. The device is 800 nm wide and 1345 nm long. Here we distinguish two types
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Figure 6.3: Top views of the equilibrium electron density (upper panel) and electrostatic po-
tential (lower panel) within the 2DEG. The rectangles indicate the position of the metal gates
on the surface.

of gates: side gates (black) and mid gates (dark gray). The two side gates are 280 nm wide,
1345 nm long, and biased at —0.245 V. The three mid gates are 40 nm wide and 200 nm, 800 nm,
and 200 nm long, respectively. To the mid gates a voltage of —0.660V is applied. The gates
define two quantum wires (light gray) with a nominal width of 100 nm as well as two coupling
windows (white) with a nominal length of 72.5nm. The subband spacing of the two lowest
subbands in each of these quantum wires is 3.1 meV. The Fermi wave length in the lowest
subband amounts to Ap = 77nm and thus is of the same order as the nominal length of the
coupling windows. To control the phase shift of the electron wave function between the two
quantum wires either a small additional bias voltage Vg is applied with opposite sign to each
of the two side gates, or additional gates are placed on top of the quantum wires and £V
is applied to these gates. The first design that combines the phase gate and the side gates
requires applying larger additional bias voltages to achieve the phase shift. For the specific
device that we have studied, these larger bias voltages result in a contribution of the second
subband as the Fermi energy is only slightly (~ 80 peV) below the second subband for Vg = 0.
By the contribution of the second subband the interference is suppressed. In the following, we
therefore focus on the design that employs additional gates. If however the subband spacing
can be increased, the first design is to be preferred because of its greater conceptual simplicity.

Figure 6.3 shows the equilibrium charge density (upper panel) and the corresponding po-
tential (lower panel) in the 2DEG layer of the Mach-Zehnder interferometer. The black and
the white rectangles indicate the position of the metal gates on the surface of the heterostruc-
ture. The upper panel shows that the 2DEG is fully depleted underneath the gates and by
this, the quantum wires and the coupling windows are formed. The quantum wires are real
one-dimensional, i.e. only the first transversal quantum wire mode contributes to the density.
The lower panel shows the potential barrier that separates the two quantum wires. The energy
scale is chosen so that the Fermi energy coincides with zero.

Figure 6.4 (a) shows the currents Jy (solid), J; (dashed), and also the detrimental current
Jo that flows from the upper left terminal to the lower left terminal (dotted). The latter is a
measure of back-scattering. The currents have been calculated by assuming a DC bias voltage
of 50 1V and a temperature of 30 mK. The figure shows the dependence of the currents on the
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Figure 6.4: Stationary currents .Jy (solid) and J; (dashed) through the Mach-Zehnder inter-
ferometer as a function of the phase gate voltage Vi for two different nominal lengths of the
coupling windows. (a) For a coupling window length of 72.5 nm the currents show an interfer-
ence pattern with almost 100% visibility. (b) If the length of the coupling windows is reduced
by only 7%, the interference pattern is already noticeably disturbed. Also shown is the cur-
rent (dotted) that flows from the upper left terminal to the lower left terminal and is due to
reflections.

voltage Vi applied to the phase gate. We first note that the detrimental current J; is smaller
than 0.5nA for the presented range of gate voltages. This shows that back-scattering from
the upper left to the lower left terminal does not play a dominant role here. In contrast to
Jo, the currents Jy and J; show a strong dependence on the gate voltage. In essence, over the
presented range of gate voltages, Jy and J; oscillate in between 0 nA and 4nA for more than
1.5 periods. For zero gate voltage, Jy is minimal and J; is maximal, thus the two currents are
phase-shifted relative to one another by 7. This result confirms that the device actually behaves
as a Mach-Zehnder interferometer. In the following, we will therefore denote the dependence
of the currents Jy and J; according to Fig. 6.4 (a) as Mach-Zehnder interference pattern. Note
that the interference pattern is damped out if the absolute gate voltage is too large. The reason
for this is that by increasing the gate voltage we also increase the amount of back-scattering.
This can be avoided by increasing the length of the device instead of increasing the gate voltage,
because the phase shift depends linearly on the length of the phase gate, whereas back-scattering
is independent of the length but depends on the absolute value of the gate voltage.

For comparison, we show in Fig. 6.4 (b) the currents Jy, Ji, and Jy for the same device
but with the nominal length of the coupling windows reduced by 7%. Even this small change
in the nominal length of the coupling windows disturbs the interference pattern. The strong
dependence of the interference pattern on the size of the coupling windows therefore requires a
very high fabrication precision.

Figure 6.5 shows the charge densities of the stationary current carrying states of the Mach-
Zehnder interferometer for selected phase gate voltages. The three figures 6.5 (a), (b), and (c)
correspond to gate voltages of 0mV, —3.6 mV, and —7.5mV, respectively. The charge densities
illustrate the quantum mechanical nature of the interference pattern. The three graphs show
that the charge densities change predominantly at the right terminals. This change reflects
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(a)
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(b)
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Figure 6.5: Charge densities of the current carrying scattering state for three different gate
voltages. Current flows from the upper left terminal to (a) the lower right terminal, (b) both
right terminals, (¢) the upper right terminal.

the redistribution of the total current between Jy and J;. In Fig. 6.5 (a) the charge density is
zero at the upper right terminal and finite at the lower right terminal. From Fig. 6.4 we see
that for the corresponding gate voltage of 0 mV the current Jy is minimal and the current .J;
is maximal. Similarly, in Fig. 6.5 (b) the charge density is equal at both right terminals, and
also the currents Jy and J; are equal for a gate voltage of —3.6 mV. Eventually, in Fig. 6.5 (c)
the charge density is finite at the upper right terminal and vanishes at the lower right terminal.
Correspondingly, the current .Jy is maximal and the current J; is zero for a gate voltage of
—7.5mV.

The change of the charge densities to the right of the second beam splitter is a consequence
of the interference of the electron wave function. This interference depends on the relative
phase that the wave function acquires on its way through the upper quantum wire as compared
to the lower quantum wire. Depending on this relative phase, the interference at the second
beam splitter leads to a (partial) extinction either at the upper right terminal or at the lower
right terminal.

6.2.4 Discussion

The DC I-V characteristics shown in Fig. 6.4 (a) exhibits multiple pronounced switches. These
can be attributed to rotations of a qubit on the Bloch sphere. According to reference [107] one
can define the basis states |0) and |1) of a qubit by an electron that propagates through one
of two quantum wires. In particular, in the stationary picture, we can relate the stationary
scattering states shown in Fig. 6.5 to specific transformations of an initial state |¢,) into a final
state ‘¢f>. The initial state is characterized here by an electron that enters the device at the
upper left terminal, which we denote as |0). On the right hand side of the first beam splitter,
the electron is in an intermediate state that is a linear combination of |0) and |1) and is given
approximately by (|0) + exp (i¢;) |1)) /v/2 with an unknown phase factor exp (i¢;) and up to
an overall phase factor. On the left hand side of the second beam splitter, the electron is still
in the same intermediate state (]0) 4 exp (i¢, (V) |1)) /v/2, but with a different phase factor
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Figure 6.6: Probability for an electron entering the H shaped quantum wire device at terminal 1
to be transmitted to (a) terminal 3, and (b) terminal 4 as a function of the length [ of the
coupling window and the kinetic energy of the electron for fixed width w. The resonances can
be related to the energies of the lowest quantum states in a box of size [ X w. The arrows
point to crossings of resonances belonging to different transversal quantum numbers. At these
crossings the transmission probability 1 — 3 vanishes and the transmission probability 1 — 4
is close to unity.

exp (i¢, (Vo)) that also depends on the phase gate voltage V. On the right hand side of the
second beam splitter, the electron leaves the device in a state that is a linear combination of
|0) and |1), where the admixture of the two states depends strongly on the phase gate voltage.
For the three graphs shown in Fig. 6.5 these final states ‘(b f> are approximately given (up to an
overall phase factor) by [1), (|0) +exp (i¢) [1)) /v2, and [0) for (a), (b), and (c), respectively,
where again exp (i¢) is an unknown phase factor.

We now want to address the question concerning the strong dependence of the interference
pattern on the length of the coupling windows. This can be illustrated by means of an H
shaped structure as the one depicted in the insets of Figure 6.6 (a) and (b). We have defined
this structure within a 10nm thick slab of GaAs by hard wall potentials. The structure is
characterized by three parameters: the width of the quantum wires wqw, the width of the
coupling window w and the length of the coupling window [. For the following calculations,
we have chosen wqw = 60nm and w = 100nm. Figure 6.6 (a) shows the probability for an
electron that enters the H shaped structure at terminal 1 to be transmitted to terminal 3 (we
denote this transmission probability by Ti3) as a function of the coupling window length [
and the kinetic energy of the electron. Correspondingly, Fig. 6.6 (b) shows the transmission
probability from terminal 1 to terminal 4, denoted as 714. The energy range covers the first
three modes of the quantum wires. Without the coupling window, the transmission 75 would
therefore increase from 0 to 3 in steps of unit magnitude. However, the coupling between the
two quantum wires causes Ti3 to be resonantly reduced for specific energies that depend on
the length of the coupling window. At the same time T34 is enhanced as can be seen from
Figure 6.6 (b). In the case of this hard wall potential model, the energies of these resonances
are approximately equal to the energies of the bound states in a rectangular box with the
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Figure 6.7: Transmission probabilities for an electron entering the H shaped quantum wire
device at terminal 1 to be transmitted to terminal 3 (solid), terminal 4 (dashed), and terminal
2 (dotted) as a function of the kinetic energy of the electron for a length [ of the coupling
window equal to 82nm.

dimensions of the coupling window. Thus, resonances occur if an integer multiple n of half the
wave length of the electron matches the length of the coupling window. For the first mode,
the transmission 773 drops from 1 to 0.25 at such a resonance. The transmission probabilities
Ti1, Ti2, and Ti4 from terminal 1 to terminals 1, 2, and 4 increase from 0 to 0.25, i.e. the
electron is transmitted to each of the four terminals with equal probability. In Fig. 6.7 (a)
the transmission probabilities Ti2 (dotted curve), Ti3 (solid curve), and 774 (dashed curve) are
shown for an example of such a resonance. These resonances have a typical width of only a few
100 peV and occur for any length of the coupling window at multiple energies. However, for a
beam-splitter we require that Ti3 ~ T4 ~ 0.5 and T1; =~ T15 ~ 0.

The dependence of the resonance energy on the length of the coupling window is determined
by the number n of half wavelengths that fit through the coupling window. Therefore, reso-
nances that belong to different n become degenerate for specific lengths. In the graphs shown
in Fig. 6.6, two such crossings have been emphasized by arrows. The first one occurs at a length
of 82 nm. For this coupling window length, Fig. 6.7 (b) shows the transmission probabilities 773
(solid curve), T14 (dashed curve), and T2 (dotted curve) for a small energy range around the
energy of the crossing. At the energy of the crossing, the transmission probability T}3 vanishes
whereas the transmission probability 774 approaches unity. The transmission probability 717, is
small. It follows that for a slightly smaller as well as for a slightly larger energy the transmission
probabilities T13 and Ti4 are identical, and in addition they are indeed approximately equal to
0.5. This is exactly the condition that is required for a beam-splitter. If the length of the cou-
pling window is changed by only 5nm, the energy difference of the two contributing resonances
is already larger than 100 peV, which is sufficient to destroy the beam-splitting condition. The
same argument also holds for the width of the coupling window. The strong dependence of the
interference pattern on the size of the coupling window is therefore a consequence of the fact
that the beam-splitting condition depends on the energies of two resonances.
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Figure 6.8: Schematic view of the proposed quantum transport device. The device is realized
by two stacked GaAs/AlGaAs 2DEGs. The top 2DEG is depleted by external gates to form
a Mach-Zehnder interferometer. In the bottom 2DEG two coupled quantum dots are located.
For sake of clarity, the figure is not drawn to scale.

6.3 Entangled Mach-Zehnder double quantum dot de-
vice

6.3.1 Introduction

The single-qubit gate based on the all-electric Mach-Zehnder interferometer presented in the
preceding section is the basis of our novel two-qubit quantum transport device, which we will
discuss in the following. We have calculated the DC [-V characteristics through the device by
means of our method for ballistic quantum transport in entangled two-particle systems that we
have presented in Chapter 5. As we will show, the proposed device allows for the controlled
generation and measurement of entanglement between a quantum wire qubit and a double
quantum dot qubit. The measurement involves only the DC [-V characteristics, no higher
order current correlations are required to detect entanglement.

A schematic view of the proposed device is shown in Figure 6.8. The device is based on a
GaAs/AlGaAs heterostructure that consists of two vertically stacked two-dimensional electron
gases (2DEGs). The 2DEGs are locally depleted by the application of negative voltages to metal
gates on the surface of the heterostructure. Thus an all-electric Mach-Zehnder interferometer
is formed in the upper 2DEG and a pair of tunneling coupled single electron quantum dots is
formed in the lower 2DEG.

Electrons in the Mach-Zehnder interferometer and in the double quantum dot interact by
means of the Coulomb interaction. In general, the interaction between two quantum mechanical
systems leads to an entanglement of these systems: none of the systems can be separately
represented by pure quantum states. We therefore refer to the proposed device as Entangled
Mach-Zehnder Double Quantum Dot Device. The maximum degree of entanglement depends
on the geometric arrangement of the Mach-Zehnder interferometer and the double quantum
dot. By means of our studies we could determine an optimum geometric arrangement that
promises a particularly high degree of entanglement.

6.3.2 Numerical Details

For the discretization of the entangled Mach-Zehnder double quantum dot device, we have used
a grid with 8 x 10* grid points. For the determination of the retarded Green’s function of the
closed device we have taken into account the lowest 100 eigenstates and we have taken into
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Figure 6.9: Currents Jy and J; as a function of the phase gate voltage for two different tunneling
couplings ¢t in peV. This figure shows that the visibility of the interference pattern depends on
the tunneling coupling.

account the lowest 5 transversal modes in each of the four leads.

6.3.3 Results

In the following we present the results for the entangled Mach-Zehnder double quantum dot
device. In these calculations the electron charge density and the corresponding potential have
not been calculated self-consistently. Instead, we have defined the Mach-Zehnder interferometer
by a hard-wall potential within a 10 nm thick slab of GaAs. The two quantum wires are 55 nm
wide, 1000nm long, and the lateral distance between them amounts to 20nm. The coupling
windows have a length of 85 nm. The energy spacing of the two lowest subbands is 5.3 meV,
and the Fermi energy has been set to 1.6 meV in the lowest subband. For electrons with this
kinetic energy, the coupling windows act as almost perfect beam-splitters. For the calculation
of the interaction between the Mach-Zehnder interferometer and the double quantum dot we
assume a vertical distance of 80 nm between the Mach-Zehnder interferometer and the quantum
dots. One of the quantum dots is located exactly underneath the center of the Mach-Zehnder
interferometer. The lateral distance between the two quantum dots is chosen to be 60 nm. The
double quantum dot system is modeled according to the Hamiltonian given by Equation (5.37).
The relative geometric arrangement of the Mach-Zehnder interferometer and the double quan-
tum dot has a large influence on the operation of the device. The configuration that we have
chosen here exploits the idea that the interaction due to an electron in the quantum dot un-
derneath the center of the Mach-Zehnder interferometer is identical for both quantum wires.
Thus, the phase shifts induced by an electron in this quantum dot are also identical for both
quantum wires and therefore cancel. This is equivalent to the case that the electron in this
quantum dot does not interact with the electrons in the quantum wires at all. Therefore, the
effect of the interaction between an electron in the other quantum dot and the electrons in the
quantum wires is the more pronounced. We have confirmed the assumption that this geometric
arrangement is optimal for the operation of the device by approximating the phase shifts within
a WKB model as well as by the presented numerical calculations.
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Figure 6.10: Visibility of the interference pattern as a function of the tunneling coupling. The
visibility decreases monotonously with increasing tunneling coupling.

Figure 6.11: Charge densities of the current carrying states in the two basis states of the
quantum dot qubit for a finite tunneling coupling of ¢ = 10 peV. The upper panel shows the
charge density for the ground state, the lower panel shows the charge density for the excited
state of the quantum dot qubit.

At first, we study the I-V characteristics of the device for a situation where tunneling
between the quantum dots is inhibited (¢ = 0). For the ground state splitting we have chosen
a value of A = 10 peV. The result is shown in Fig. 6.9 by the solid curves. We obtain the
typical interference pattern that we have also found in the previous self-consistent calculations
for the all-electric Mach-Zehnder interferometer. The pronounced asymmetry with respect to
the sign of the gate voltage is caused by the asymmetric position of the phase gate along only
one of the two quantum wires in combination with the additional repulsive potential due to the
electron in the double quantum dot.

We now allow the electron in the double quantum dot to tunnel between the two quantum
dots (t = 10 ueV). The currents Jy and J; for this situation are shown in Fig. 6.9 by the dashed
curves. We still obtain the Mach-Zehnder interference pattern, but the visibility is reduced.
For simplicity we define the visibility here by v = (J1 — Jo) / (J1 + Jo)ly,—¢ 1.€. for zero phase
gate voltage V. Figure 6.10 shows the visibility as a function of the tunneling coupling.
The visibility is almost 1 for vanishing tunneling coupling and decreases monotonously with
increasing tunneling coupling. The visibility is therefore uniquely related to the tunneling
coupling.

The suppression of the visibility for non-vanishing tunneling coupling can be visualized by
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means of the charge densities of the current carrying states. For a tunneling coupling t = 10 ueV
these are shown in Fig. 6.11 separately for the two basis states of the double quantum dot qubit.
The upper panel corresponds to the ground state, the lower panel corresponds to the excited
state. The figure shows that initially (i.e. to the left of the first beam splitter) the quantum
dot qubit is in the ground state. Also immediately to the right of the first beam splitter, the
quantum dot qubit is still in the ground state. However, by means of the Coulomb interaction,
the probability of the quantum dot qubit to be in the ground state is lowered towards the
second beam splitter, mainly for the lower quantum wire. At the same time, the probability
of the quantum dot qubit to be in the excited state is increased. As a consequence of this
probability redistribution, the interference at the second beam splitter is modified so that to
the right of the second beam splitter the charge density is finite in the upper as well as in the
lower quantum wire in both states of the quantum dot qubit. The total charge density is the
sum of the charge densities for the two states of the quantum dot qubit. Therefore, the total
charge density is also finite in both quantum wires to the right of the second beam splitter.
This in turn reflects the fact that both currents, Jy and J;, are finite and thus that the visibility
is suppressed.

6.3.4 Discussion

The suppression of the visibility can be understood as the result of a two-qubit quantum
operation. We can think of the entangled Mach-Zehnder double quantum dot device as a two-
qubit quantum gate that is based on the Coulomb interaction between the electrons in the pair
of quantum wires (qubit W) and in the double quantum dot (qubit D). Following reference [107]
the basis states [0)" and |1)" of qubit W are defined by an electron that propagates through
cither of the two quantum wires. The basis states [0)” and 1) of qubit D are defined by the
ground states of the isolated quantum dots. On the basis of this picture we have developed
a simple dynamic, analytical model of the device. The details of this model are presented in
the following section and in Appendix F. The model captures the basic physics of the device
and reproduces Fig. 6.9 qualitatively for the transmission probabilities Tjpy and Tj;y given by
Equation (6.20). The reason for the suppression of the visibility is the entanglement of the
two qubits. From the point of view of each of the two qubits, the entanglement with the other
qubit is nothing else than decoherence. This decoherence disturbs the interference between the
electron wave function in the two quantum wires. In other words, the reduced density matrix
of each of the qubits that is obtained by tracing out the degrees of freedom of the other qubit
represents a mixed state if and only if the two qubits are entangled.

In the context of the analytical model, we have quantified this relation and we have derived
an analytical expression for the relation between the visibility and the von Neumann entropy,
which is a measure for the degree of entanglement. According to this expression, the von
Neumann entropy is given by

S=- Z p;log p;, (6.1)
i=+,—
where p. are the eigenvalues of the reduced density matrix of qubit W. These eigenvalues
depend on the visibility as follows:

P = % (1+v). (6.2)

By means of these equations the von Neumann entropy depends monotonously on the visibility.
A visibility of v = 1 corresponds to vanishing von Neumann entropy (zero degree of entangle-
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Figure 6.12: The figure shows the von Neumann entropy as a function of the tunneling coupling.
The von Neumann entropy is a measure of the degree of entanglement and is uniquely related
to the tunneling coupling.

ment), for a visibility of v = 0 we find a von Neumann entropy of S = 1 (maximum degree of
entanglement). We have used this relation to determine the von Neumann entropy as a function
of the tunneling coupling for the entangled Mach-Zehnder double quantum dot device. The
result is presented in Fig. 6.12 and shows that the von Neumann entropy is uniquely related to
the tunneling coupling. Thus we conclude that first, the degree of entanglement can be deter-
mined simply by measuring the DC I-V characteristics of the device. Second, the device offers
a simple way for external control over the degree of entanglement as the tunneling coupling can
be easily tuned by external gates.

Entanglement is essential for any kind of non-trivial two-qubit operation. The controlled
generation of entanglement between the quantum wire qubit and the double quantum dot qubit
therefore demonstrates that the entangled Mach-Zehnder double quantum dot device can be
considered as a two-qubit quantum gate.

6.4 Analytical model for the entangled Mach-Zehnder
double quantum dot device

6.4.1 Introduction

While detailed numerical calculations as the ones presented in the last two sections are ex-
tremely helpful in working out concrete proposals for novel devices, analytical models often
have the advantage that the underlying physics can be illustrated more clearly. In the inter-
pretation of the results of the previous section, we have therefore also made use of such an
analytical model, where the device has been reduced to two interacting qubit systems. In the
following, we present this model in detail and we demonstrate that qualitatively we can obtain
the same results as in the last section. This shows on the one hand that the model indeed
captures the physics of the device, and on the other hand, it validates our numerical results.
On the basis of the model we further derive an analytical relation between the visibility of the
interference pattern and the von Neumann entropy.
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Figure 6.13: Schematic of the analytical model of the entangled Mach-Zehnder double quantum
dot device. The device is represented by the two qubits W and D and a series of one- (R and
P) and two-qubit gates (V).

6.4.2 Analytical model

The entangled Mach-Zehnder double quantum dot device can be considered as a two-qubit
quantum gate based on the Coulomb interaction between a pair of quantum wires (qubit W)
and a single electron double quantum dot (qubit D). The basis states [0)" and |1)" of qubit
W are defined by an electron that propagates through either of the two quantum wires. For
the double quantum dot qubit, we neglect excited states and define the basis states ]O)D and
11)® by the ground states of the two isolated quantum dots.

Quantum gates can be described by unitary operators that map an initial state |¢;) onto a
corresponding final state ‘gb f> The unitary operator T that represents our two-qubit quantum
transport device can be decomposed into a sequence of unitary operators of less complex single-
and two-qubit gates as follows:

T=R-P-V-R. (6.3)
A schematic of this description is shown in Fi igure 6.13. The operators Rand P represent single-
qubit gates that act on qubit W. In detail, R represents a m / 2 rotation gate and P represents
a phase gate with variable phase angle. The sequence R-P-R corresponds to a Mach-Zehnder
interferometer. The operator 1% represents a two-qubit gate and describes the coupling of the
two qubits due to the Coulomb interaction. The advantage of this decomposition is that we
do not have to develop a consistent description for the whole device. Instead, we can specify
the action of each of the components individually. In particular, this allows us to specify the
single-qubit gates R and P explicitly and consequently to focus on a dynamic model for the
two-qubit gate V.

To this end, we represent the two electrons in the pair of quantum wires and the double
quantum dot by the following basis states

Yray (@) = exp (ika) [ )P, 6,j=0,1 (6.4)

These states describe the two electrons as follows: The first electron propagates along the x
axis in either of two states |0)" and |1)", corresponding to the two quantum wires. The
second electron occupies one of the two quantum dots, represented by states [0)° and |1)".
The two-particle Hamiltonian that describes the free dynamics of the system is then given by

=12 /2m @ 13, © 135 + 1,m) ® 1y, ® HY, (6.5)

where HP is the model Hamiltonian that according to Eq. (5.37) describes a pair of tunneling
coupled quantum dots in terms of the bare splitting A and the tunneling coupling t. We do
not take into account the Coulomb interaction between the two electrons exactly, but make the
following ansatz

V() =U ™02 ™ (170 ()0 (L ). (6.6)
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This describes a localized interaction with interaction strength U that is restricted to the two-
particle state [1)" |1)°. The interaction only acts if the position of the quantum wire electron is
in between z = 0 and « = L. The resulting quantum mechanical scattering problem Hy+V (z)
can be solved analytically for the 8 x 8 transfer matrix 7},. It is convenient to first diagonalize
Hy and use the eigenstates of Hy as asymptotic states. Since V (z) only acts on the state
11)™|1)® the only non-trivial part of T}, is the 4 x 4 submatrix 7 that connects the asymptotic
states

V1 (@) = exp (£ikz) 1) |B)", (6.7)
V3 () = exp (£ikz) |1)" |4)° (6.8)
for & — —oo with their analogs for z — co. The states |B)” and |A)” are defined as in

Eq. (5.38) and Eq. (5.39). The explicit expression for the submatrix 7 is given by 7 =
r 5l o sty Where for z =0, L

o (yx (ko) . 8@)) | ©9)

_ apVy (qs) Ve (qa)
Hap = <ﬁBuw (@) Bavs @A))' (6.10)

The 2 x 2 matrix v, (k) is defined as follows:

_( exp (ikz) exp (—ikx)
va (k) = (@k exp (tkz) —ikexp (—lk‘x)> ' (6.11)

The coefficients ax, Sy and the wave vectors kx and gx (X = A, B) are given by (t,U > 0)

ax = v (6.12)

VUEx (Ex + ) + AUY 4 2072

4Ex (Ex +¢)+ AU
VUEx (Ex +¢) + AUY 4 202

kx = %Mzm (E — Ex), (6.14)

1 1
ix = —1[2m (B — = 1
ax h\/m( 2Uq:5>, (6.15)

where ¢ = 4/t + (U + A)?. The details of the derivation of the transfer matrices are given in
Appendix F.

Within this model we include the rotation and the phase gate by explicitly specifying the
8 x 8 transfer matrices T, and T for these gates. The transfer matrix 7" of the complete device
is then given by the product of the individual transfer matrices according to Eq. (6.3), i.e.

Bx = (6.13)

T=Ty -Tp-Ty Tp (6.16)

We obtain the transfer matrices 7% and 7’5 from the following representations of ideal rotation
and phase gates

5 (cos(f) —sin(0) D B
R= (Sin & oo (6) ) ©10,,  0=r/2 (6.17)
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Further, we assume that these gates do not introduce back-scattering, and accordingly we apply
R and P separately to the asymptotic states for both directions of propagation.

The transfer matrix 7" maps the asymptotic states for x — —oo onto the asymptotic states
for + — oo. By rearranging and partial inversion of the transfer matrix we construct the
scattering matrix S. The scattering matrix relates the initial state |¢,) to the final state ‘(b f>

‘¢f> =S |¢z>

The initial state is a linear combination of the in-going asymptotic states, whereas the final
state is a linear combination of the outgoing asymptotic states. We consider the case that
the propagating electron enters the pair of quantum wires from the left in state |0>W We
further assume that the electron in the double quantum dot is initially in the bonding state
|B)P. The eight final state coefficients represent the transmission amplitudes into the four
states |i)" | X)° (i = 0,1, X = A, B) for each of the two asymptotic propagation directions
(either to the right or back to the left). We denote these final state coefficients by Ej y and
Ei +, respectively. By construction, the two rotation gates and the phase gate do not introduce
any back-scattering. The amount of back-scattering due to the interaction V (z) depends on
the ratio of the interaction strength U and the length L of the interaction region and can
be made arbitrarily small. Thus, the transmission amplitudes Ei ¢ are negligible. We can
therefore calculate the transmission probabilities Tjoy and T}y that the propagating electron is

(6.18)

(6.19)

transmitted either into state |0)" or into state [1)", i.e. irrespective of the final state of the
electron in the double quantum dot, from the transmission probabilities E

Ty =B+ |Ep”.  i=0.1 (6.20)

6.4.3 Relation between visibility and von Neumann entropy

In the following we derive the relation between the visibility of the interference pattern and the
von Neumann entropy. Further details of the derivation are presented in Appendix F. For this,
we assume that back-scattering is negligible. This allows us to describe the device by Eq. (6.3)
instead of by the scattering matrix S. The density matrix of the final state is then given by

EooEdy EooEd: EooEig EooEi,

P Eo1Esy EoiEg: EoiEig EoiEi, (6.21)
EroEsy EroEsy EroEiy EroEq, .
Ei1E5y EraEGy EraEr, EviEq,

Here, the coefficients £; ; denote the final state probability amplitudes of the four states |2)W |7 )D
(1,7 = 0,1). The von Neumann entropy

S =-Tr Pred IOg Pred (622)

is a measure of the degree of entanglement of the two particles in the final state. The reduced
density matrix p,.q is obtained from p by tracing out the degrees of freedom of one of the two
particles. Here we choose to trace out the electron in the double quantum dot. For the reduced

density matrix we obtain
Ty Z >
Prea = | 7 , (6.23)
‘ (Z Ty
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where the coherence 7 is given by

Z - EU,OET,O + Eoleik,l' (624)
The von Neumann entropy can be easily calculated in terms of the eigenvalues
1
Py = 3 (1i\/4 (‘Z|2—T|0>T|1>) —l—l) (6.25)
of the reduced density matrix as follows:
S=-> pilogp:. (6.26)
i=+,—

We now show that the eigenvalues py can be expressed in terms of the visibility v of the
interference pattern according to
1

P =3 (1+0). (6.27)
First, we determine expressions for the transmission probabilities as a function of the angle of
the phase gate. For this, we apply the /2 rotation gate R and the two-qubit gate V' to the
initial state |¢;). The resulting state is completely determined by the probability amplitudes
A; ; of the four two-particle basis states [i)" |j) (i, = 0,1). Application of the phase gate P
and the second 7 /2 rotation gate R yields final state probability amplitudes

Lo = % (exp (i¢) Aoj + A1), (6.28)

Erj= % (—exp (i¢) Ao + A1) - (6.29)

Note that these gates, being single-qubit transformations, do not change the degree of entan-
glement of the two electrons. For the transmission probabilities T}, and 7};) we obtain

1
ﬂj) = 5 + |A0,0| |A170| COS (Qb + 50) + |A071| |A171| COS (Qb + 51) s (630)

where here and in the following + and — correspond to 0 and 1, respectively. The most general
ansatz for the amplitudes A, ; that results from the initial state by the application of the gates
R and V leads to

1 1

|Aiol® = 3 cos” (5 (v =+ 0)) ) (6.31)
1 1

‘Ai,l‘2 = 5 Sin2 (5 ("}/ + O')> . (632)

This ansatz takes into account that on the one hand the probabilities for the electron in the
quantum wire to be in either state |0)" or state [1)" must be equal due to the first 7 /2 rotation
gate R. On the other hand the electron in the double quantum dot is allowed to be in arbitrary
linear combinations of the states [0)° and |1)P that can also be different for states |0)" and
|1>W. These linear combinations are described by the mixing angles v and o. If we insert the
expressions for A; ; into Eq. (6.30) we obtain for the transmission probabilities

T = % (1 + \/cos2 (7) sin® (8) + cos? (o) cos? (§) cos (g?b)) : (6.33)
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Figure 6.14: The von Neumann entropy is shown as a function of the visibility according to
Eq. (6.27) and Equation (6.26). The figure shows that the von Neumann entropy decreases
strictly monotonously with increasing visibility.

where § = 1 (6o — 61) and ¢ = ¢ + const. From these expressions we read off that the trans-
mission probabilities Tjgy and T3y show a sinusoidal oscillation as a function of the phase angle
¢, and that the visibility of this oscillation is given by

v = \/COS2 (v) sin® (0) + cos? (o) cos? (0). (6.34)
If we now evaluate the expression |Z|* — TioyT}1y in an analogous way, we obtain

Z|? — TioyThy = ~ (cos® (7) sin® (8) + cos® (o) cos® (8) — 1) (6.35)

e Y

=, (- 1). (6.36)
Insertion of this result into Eq. (6.25) yields Equation (6.27).

In Fig. 6.14 we have plotted the dependence of the von Neumann entropy on the visibility
resulting from Eq. (6.27) and Equation (6.26). The figure shows that the von Neumann entropy
depends uniquely on the visibility. The von Neumann entropy decreases strictly monotonously
from 1 to 0 with increasing visibility. Note that a von Neumann entropy of 1 corresponds to
a maximal degree of entanglement, whereas a von Neumann entropy of 0 corresponds to zero
entanglement. Thus, a maximal degree of entanglement is characterized by vanishing visibility,
and correspondingly zero entanglement is characterized by full visibility.

6.4.4 Results and Discussion

In the following we show results obtained by the evaluation of Eq. (6.20). These results illustrate
that the proposed analytical model captures the physics of the entangled Mach-Zehnder double
quantum dot device. The parameters have been scaled with respect to the characteristic energy
scale Egar = h?/(2mL?) as introduced in Appendix F. For the graphs in Fig. 6.15 we have
chosen a total energy £’ = 1000. The coupling strength and the ground state splitting have
been set to U’ = 300 and A’ = 10, respectively.
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Figure 6.15: (a) Transmission probabilities as a function of the angle of the phase gate for two
different tunneling couplings (solid curves: ¢’ = 0, dashed curves: ¢ = 50). (b) Visibility as a
function of the tunneling coupling as obtained from the analytical model.

In Fig. 6.15 (a) the transmission probabilities Tjo and T}, are plotted for two different values
of the tunneling coupling. The solid curves correspond to a tunneling coupling ¢ = 0, for the
dashed curves the tunneling coupling has been set to t' = 50. The figure shows the sinusoidal
dependence of the transmission probabilities on the angle of the phase gate. This corresponds
directly to the interference pattern of the Mach-Zehnder interferometer. The important point
is that the visibility of the interference pattern depends on the tunneling coupling in the same
way as for the entangled Mach-Zehnder double quantum dot device: the solid curve shows full
visibility, whereas the visibility of the dashed curve is lower than 50%.

Figure 6.15 (b) shows the visibility as a function of the tunneling coupling ' in the range
between 0 and 50. The qualitative dependence of the visibility on the tunneling coupling is
almost identical to that obtained for the entangled Mach-Zehnder double quantum dot device
in the preceding section. We therefore conclude that our analytical model is indeed a valid
description of the entangled Mach-Zehnder double quantum dot device. This in turn emphasizes
that the entangled Mach-Zehnder double quantum dot device can be actually considered as a
two-qubit quantum gate.

6.5 Summary

The topic of this chapter was to theoretically study semiconductor single- and two-qubit quan-
tum gates based on electrostatically defined quantum wires and quantum dots. Our objective
was the detailed, numerical analysis of realistic, fully three-dimensional models that would
result in conceptually simple and experimentally realizable proposals of novel semiconductor
devices.

We have worked out the detailed geometry, material compositions, doping profiles, and
bias voltages for an all-electric Mach-Zehnder interferometer. Our calculations of the ballistic
current through this device show that it acts as a fully controllable single-qubit gate for electrons
propagating in either of two quantum wires. The fabrication of this device is within the reach
of present-day technology as no lithographic feature is smaller than 40 nm. We have found
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that the beam-splitters are the most critical components in terms of fabrication precision: even
deviations of a few nm in the size of the beam-splitters spoil the device operation.

The all-electric Mach-Zehnder interferometer is the basis of our novel two-qubit quantum
transport device. In this device, electrons that propagate through the interferometer are coupled
via the Coulomb interaction to a single electron double quantum dot. The ballistic transport
properties of this device have been calculated with the novel method that we have developed
in Chapter 5. We have shown that the interaction between the electrons in the interferometer
and the double quantum dot results in a reduced visibility of the Mach-Zehnder interference
pattern. The tunneling coupling between the two quantum dots can be used to externally
control this suppression. Further, our three-dimensional calculations have allowed us to identify
the optimum geometric arrangement of the interferometer and the double quantum dot.

We have developed a simple analytical model of the novel device in terms of two interacting
single-qubit systems. This model allows for an in-depth understanding of the device physics
and the interpretation of the numerical results from a quantum information point of view: the
visibility of the interference pattern is a measure for the entanglement of the two qubits as it is
uniquely related to the von Neumann entropy. Thus the device realizes a non-trivial two-qubit
quantum operation. In particular, it allows for the controlled generation and straightforward
detection of entanglement from DC -V characteristics.
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Chapter 7

Further Applications

7.1 Calculation of carrier transport through quantum
dot molecules

Introduction

Many concepts for quantum information processing in semiconductors are based on quantum
dots. Two types of quantum dots have to be distinguished: electrostatically defined quantum
dots and self-assembled quantum dots. In the following we will focus on the latter ones. To
define a qubit based on quantum dots one can either exploit the charge degree of freedom
[111, 112], excitonic degrees of freedom [113], or the spin degree of freedom [114, 115]. The
possibility of coherent manipulation of excitonic qubits in single self-assembled quantum dots
has been shown in a number of experiments performing Rabi oscillations by the application
of electromagnetic pulses [116-120]. Another application of self-assembled quantum dots in
the area of quantum information processing is the generation of entangled photons [121] and
the deterministic generation of single photons, which is necessary for quantum cryptography
(Ref. [122] and references therein). Beyond, self-assembled quantum dots are also of great
interest for more traditional electro-optical devices such as lasers [123, 124].

Self-assembled quantum dots are grown in a self organized process driven by strain relaxation
when a pseudomorphically strained layer of some material is deposited on a different substrate
material and a certain critical layer thickness is exceeded (so called Stranski-Krastanov growth
mode). This was first demonstrated in 1994 by Petroff and DenBaars, with InAs grown on a
GaAs substrate [125].

Single quantum dots are limited to one, at maximum two qubits [126]. However, quantum
computations demand for multi-qubit systems and the possibility to perform quantum gate
operations between pairs of qubits. Several proposals have therefore considered the possibility
to employ coupled quantum dots for the implementation of single qubits [127] as well as multiple
qubits [128]. Coupled quantum dots can be realized by exploiting strain-induced correlation
effects in the Stranski-Krastanov growth of multiple quantum dot layers on top of each other.
The experimental realization of such vertical stacks of quantum dots [129, 130] is almost as old
as that of a single layer of quantum dots by Petroff and DenBaars. Due to strain relaxation
the quantum dots in latter layers grow preferentially on top of quantum dots in former layers,
thereby forming self-aligned vertical stacks (Fig. 7.1).

The fabrication of semiconductor nanostructures by self-assembly has the disadvantage that
the only parameters that influence the details of the structure are those that control the growth
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Figure 7.1: High resolution TEM cross-section of vertically correlated InAs-GaAs quantum dots
via multi-layer Stranski-Krastanov growth. The picture is taken from Reference [110].

conditions. In general, this does not allow for a directed and reproducible fabrication of the
desired structures. Thus it is necessary to identify suitable structures a posteriori, i.e. in a post-
selection process. Such a process requires that quantum dots and quantum dot molecules can
be characterized in situ. A common technique for characterizing quantum dots and quantum
dot molecules is the use of optical spectroscopy [6, 19, 131]. Here, we suggest a different
approach, based on ballistic transport through quantum dot molecules. Recently, Bryllert et
al. have shown [132, 133] how to measure the ballistic tunneling current through a quantum
dot molecule embedded in a resonant tunneling diode (RTD). We show that measurements of
the tunneling current provide a wealth of unique information about the size, geometry, and
the energy levels of quantum dot molecules and can therefore help to improve the in situ
characterization of quantum dot molecules. In particular, we present a quantitative theoretical
analysis of the ballistic current through a quantum dot molecule based on two vertically stacked
quantum dots embedded within a RTD. Our calculations are based on a fully three-dimensional
model of the RTD with realistically shaped quantum dot structures including the wetting layers.
The local strain is calculated by minimizing the total elastic energy of the entire device. We
solve the Poisson equation including the piezoelectric charges and subsequently calculate the
ballistic current in terms of the contact block reduction method.

Modeling quantum dots and quantum dot molecules

As a further introduction into the topic of quantum dots and quantum dot molecules, we want
to give a short overview on the subject on modeling quantum dots, respectively quantum dot
molecules. Over the last years sophisticated numerical approaches have been developed for the
interpretation of experimental results on quantum dots. The starting point of this development
have been the articles published by Grundmann, Stier and Bimberg [134, 135] and Pryor et
al. [136, 137] who first used three-dimensional models including the calculation of the strain
distribution for a quantum dot and wetting layer embedded in GaAs. Most of the present
approaches are based on a quantum mechanical description of the quantum dots in terms
of single-band or multi-band Hamiltonians in k& - p parameterization. However, more recent
works also employ Hamiltonians that include more details of the electronic structure such as
tight-binding [138] or pseudo potentials [139]. In the present analysis of ballistic transport
properties of electrons through quantum dot molecules, our interest is focused on the spectrum
and wavefunctions of the electron like states. Thus, we neglect the coupling between valence
and conduction bands and choose the single-band effective mass approximation for the quantum
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Figure 7.2: Localization of the piezoelectric charges for a quantum dot in the shape of a trun-
cated pyramid. The positive and negative charges are indicated in red and blue, respectively.

mechanical description of our quantum dots.

The first models for the shape of self-assembled quantum dots were steep pyramids [134],
similar to those observed experimentally for surface grown quantum dots. However, for buried
quantum dots, interdiffusion during the capping process changes this shape. Depending on the
growth conditions, a more realistic picture of buried quantum dots is that of truncated pyramids
or lens shaped dots. An important role concerning the confining potential of quantum dots and
therefore also concerning the energies and localization of the electron and hole wavefunctions,
is played by the alloy composition. In InGaAs quantum dots for example, the Indium content
is distributed inhomogeneously, increasing from the bottom to the tip of the dot. This leads to
localization of the hole in the tip, while the electron remains delocalized over the whole dot.
Modeling the Indium distribution accurately has proven to be one of the major achievements
in the understanding of experimental data on Stark shifts [140]. More refined models of the
Indium distribution were given in References [141, 142].

The growth of quantum dots is driven by strain relaxation between the substrate and the
deposited material. Differences in the lattice constants of the two materials are the reason for
the build up of these driving strain fields. Strain however is not completely relaxed and has a
tremendous influence on the electronic structure of quantum dots. One part of this influence is
by means of changes in the bandstructure in terms of deformation potentials, the second part
are piezoelectric polarization charges. There are basically two models for calculating the strain
relaxation in semiconductor nanostructures: The valence-force-field method [143] is an atomistic
model and bound to the atomic lattice. It is therefore computationally very demanding. The
second model is the continuum model as described in Section 1.2.4 and in Reference [19]. The
continuum model can be employed on a grid with arbitrary resolution and is computationally
less demanding. However, the relative displacement of the atoms of the crystal basis cannot be
described within the continuum model.

The piezoelectric charges are readily obtained from the off-diagonal elements of the strain
tensor according to Eq. (1.80) and Equation (1.83). The piezoelectric charges for a quantum
dot in the shape of a truncated pyramid are shown in Figure 7.2. The piezoelectric charges
are strongly localized at the edges of the dot and generate an octupole contribution to the
electrostatic potential.

If multiple layers of quantum dots are grown subsequently, the quantum dots in latter layers
grow preferentially on top of quantum dots in former layers, thereby building stacks of quantum
dots. Again, strain is responsible for this self organized growth. If the separation between the
layers is small the dots are coupled quantum mechanically and form a quantum dot molecule.
The same methods that are used for modeling quantum dots can also be used to model quantum
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/ InGaAs emitter

\ InGaAs collector

Figure 7.3: The structure of the device including the InGaAs leads (black), wetting layers (blue),
and the QDs (red). The current flow from the emitter to the collector increases resonantly if
two states in the upper and the lower QD are aligned in energy.

dot molecules.

Comparison to experimental results

The resonant tunneling diode (RTD) as depicted in Fig. 7.3 is composed of a 33 nm thick InP
barrier with two embedded InAs quantum dots that are grown on 0.5 nm thick wetting layers.
The distance between the wetting layers is 15nm. This RTD was studied experimentally by
Bryllert et al. [132, 133]. As depicted in the inset of Fig. 7.4, upon applying a bias, pairs
of bound states in the two adjacent quantum dots can be brought into resonance with one
another, thereby increasing the electron transmission probability by several orders of magnitude.
Figure 7.4 shows the experimentally determined as well as the theoretically predicted current.
The two quantum dots were modeled by truncated pyramids of 2.5 (5) nm height and 12 (16)
nm base width, respectively. We have assumed a homogeneous alloy profile corresponding to
no inter-diffusion of the dot material and the barrier material during capping. The difference
AFE) of the zero bias ground state energies is 87 meV. The figure shows a reasonable agreement
between the calculation and experiment concerning the position of the resonance. The absolute
value of the current is smaller by roughly a factor of 10 for the experimentally determined
curve.

The differences between experiment and calculation may have several reasons. First of all,
for our three-dimensional calculations we take into account the InP barrier region and only a
small part of the InGaAs leads. The experimentally applied voltage (also denoted as external
voltage) is therefore different from the voltage that is applied in the calculations (in the following
denoted as internal voltage drop) by the voltage that drops in the leads. We have estimated
this voltage drop and found that half of the external voltage drops in the leads, i.e. the internal
voltage drop is smaller than the external voltage by a factor of 2. This factor of 2 is accounted
for in Figure 7.4. However, also at the contacts to the InGaAs leads, the experimentally applied
voltage might drop by an unknown amount due to poor quality of the contacts that results in
Schottky barriers instead of ohmic behavior. This additional voltage drop is not accounted for in
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Figure 7.4: The experimental and calculated current through the InAs/InP QDM as a function
of the applied bias. The inset shows the mechanism of resonant tunneling: upon applying a
bias, pairs of bound state are brought into resonance and the transmission probability increases
by several orders of magnitude.

Figure 7.4 and might explain the remaining discrepancy in the positions of the experimental and
theoretical resonances. Parasitic resistances such as Schottky barriers at the contacts are also
a possible explanation of the factor-of-10 difference in the absolute current. A further reason
could be differences between the theoretically assumed and experimentally realized inter-dot
distance and lateral alignment of the two quantum dots. This issue is addressed in detail in
the next section. However, we want to anticipate here the following result that the linewidth
of the resonance and also the peak current depend strongly on the inter-dot distance and the
lateral misalignment.

To summarize, the comparison of our calculations with the experimental data from Bryllert
et al. shows that we are able to model quantum dot molecules and calculate the ballistic
transport through quantum dot molecules accurately. Despite the unaddressed issue of contact
resistances, our model should therefore allow quantitative predictions on properties of the tun-
neling current that could be used to gain information about size, geometry, and energy levels
of quantum dot molecules. This will be the topic of the following section.

Predictions

The advantage of analytical models for resonant tunneling through quantum dots consists in the
understanding of experimental findings and basic physics in terms of only a few, universal quan-
tities [144]. In Ref. [145] these are the tunneling rates I'c, I'g, and [iyer between the quantum
dots and the collector and emitter, and in between the quantum dots, respectively. However,
these tunneling rates are not directly related to properties of the quantum dot molecule such as
the size, shape, alignment and distance of the quantum dots. Moreover, important effects that
influence the energy spectrum of quantum dots, as for example strain and piezoelectric charges,
are not present in such models. Thus, analytical models are good in the explanation of the
underlying physics. However, the virtue to obtain quantitative predictions for concrete physical
systems is missing. This part of the picture can be completed by our detailed numerical calcu-



104 CHAPTER 7. FURTHER APPLICATIONS

T T T T T T
_30f 3 :
= o5l gz Tl |
= 2]

L (3] -
£ oL
.-9 15 B Inlern(a)ljvsoltaged(r)(.)z:[V] N
S
o 10} .
£
3 5[ -

11.12.13.14.15
Distance between WLs [nm]

Figure 7.5: Calculated resonance line width as a function of the inter-dot distance. The inset
shows the resonances for WL distances of 11, 13, and 15 nm, respectively. The peak current in-
creases with increasing inter-dot distance, whereas the integrated current falls of exponentially.

lations. In the following, we analyze the influence of various geometric quantities of quantum
dot molecules, such as size, inter-dot distance and lateral misalignment on the resonance line
width and peak current. These relations can then be used for the in situ characterization of
samples of quantum dot molecules.

Figure 7.5 shows the line width of the resonance to decrease exponentially with increasing
quantum dot distance, which reflects the exponential decrease in the quantum dot coupling.
The inset shows the shape of several current resonances explicitly. The peak current increases
with increasing inter-dot distance, whereas the integrated current falls off exponentially. Fur-
thermore, for decreasing inter-dot distance, the resonance is shifted to higher voltages. The
reason for this is that a smaller fraction of the total internal voltage drop occurs in between
the two quantum dots when decreasing the inter-dot distance. However, to bring the two quan-
tum states into resonance, the same voltage drop in between the quantum dots is necessary,
independent of the inter-dot distance. Therefore, the total internal voltage drop must be higher.

The dependence of the resonance line width on the lateral misalignment is much less pro-
nounced as compared to the dependence on the inter-dot distance. Figure 7.6 (a) shows the
line width as a function of the overlap of base areas. The overlap of base areas, as depicted in
Fig. 7.6 (b), measures the lateral misalignment by the relative amount of coverage of the base
area of the smaller quantum dot by the larger quantum dot and it is therefore independent of
the direction of the misalignment. We have found that the line width is proportional to the
overlap and changes in the order of a few meV if the overlap is decreased from 100% to 25%.

Further information on the lateral displacement of the two quantum dots can be obtained
by considering additional resonances. As depicted in the inset of Fig. 7.7 (a), an additional
resonance may occur if the excited state 1 in the large dot is in resonance with the ground state
0" of the small dot. Figure 7.7 (a) displays the ratio between the peak currents of the 1 — (/
resonance and the 0 — 0’ resonance as a function of the relative lateral displacement of the two
quantum dots. We note that the ratio J; .o/ Jo_o is zero if the lateral displacement between
the quantum dots vanishes. In fact, this means that J;_ is zero and therefore that the excited
state resonance is missing. The reason for this is that the excited state 1 in the large dot is p
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Figure 7.6: (a) Calculated resonance line width as a function of the overlap of base areas. (b)
The overlap of base areas is a measure for the relative coverage of the base area of the smaller
QD by the larger QD. Also shown are the according ground state wave functions.
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Figure 7.7: (a) Ratio between the peak currents of the 1 — 0’ resonance and the 0 — 0/
resonance as a function of the relative lateral displacement of the two QDs. The inset shows
the energies of the ground state 0 and the excited state 1 in the large QD and of the ground
state 0’ in the small QD. (b) Ground state wave function of the smaller QD (green) and excited
state wave functions of the larger QD (red and blue) for a lateral electric field of 25kV/ cm.
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due to charging of the large QD, plotted as a function of the base width. The inset shows the
shift of the current resonance for the neutral and the charged situation.

like and the ground state 0’ in the small dot is s like. If brought into resonance they do not
hybridize. If the two dots are displaced in different directions relative to the Cy symmetry axis,
the classification into p like and s like does no longer hold and the states hybridize if brought
into resonance. The absence of a second resonance is therefore a very clear indication for good
lateral alignment of the two quantum dots.

Another interesting technique in this context is the application of lateral electric fields. Due
to a higher polarizability of the excited states in the larger quantum dot as compared to the
ground state in the smaller quantum dot, the wave functions are shifted relative to each other.
For an electric field of 25kV/ cm, this is shown in Figure 7.7 (b). Therefore, the application of
a lateral electric field corresponds to a lateral displacement. In particular, this means that the
second resonance of an aligned quantum dot molecule can be made visible by the application
of a lateral electric field. Firstly, this proves the lateral alignment, secondly, information on the
energy difference between the ground state and the excited state in the large quantum dot is
obtained.

Information on the size of the large quantum dot can be obtained if one allows for charging
of this quantum dot. The effects of charging have been observed in Reference [133]. An emitter
electron tunnels into and occupies the large quantum dot. Because of the thick InP barrier it
takes some time before this electron tunnels out to the collector. In the meanwhile, the ground
state of the large quantum dot is shifted to higher energies by the charging energy. The zero
bias energy difference AFy between the ground state of the large and the ground state of the
small quantum dot is decreased, and the resonance voltage is lowered. This is shown in the inset
of Figure 7.8. The experimental DC [-V characteristics exhibits therefore a second resonance
at lower voltage. The peak current of this resonance is determined by scattering and tunneling
rates. In Fig. 7.8 we show our results for the calculation of the zero bias energy difference
AFE, as a function of the base width of the large quantum dot. AFEj changes in the order of
several meV for quantum dot base width in the range of 12 and 18 nm. Thus it is possible
to estimate the lateral dimensions of the large quantum dot from the difference in resonance
voltages between the ground state resonances with and without charging.
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Summary

We have emphasized the importance of quantum dots and quantum dot molecules for optical
applications as well as applications in the area of quantum computation and quantum cryp-
tography. Next, we have given an overview about modeling of quantum dots and quantum dot
molecules, pointing out the importance of strain and piezoelectric charges. We have presented
results for the calculation of the ballistic carrier transport through quantum dot molecules that
are embedded within a resonant tunneling diode. These results have been compared to experi-
mental data for a similar resonant tunneling diode, and by this we have shown that we are able
to model quantum dot molecules and calculate the ballistic current through quantum dot mole-
cules accurately. Subsequently, we have presented predictions on the dependence of properties
of the tunneling current on the geometry of quantum dot molecules. Further, we have discussed
the application of lateral electric fields as an additional technique for the characterization of
quantum dot molecules. To summarize, our calculations have shown that peak heights and po-
sitions, and the line width of the tunneling resonances through ground and excited states yield
quantitative information about the energy levels, base widths, distance, and lateral alignment
of the quantum dots in a quantum dot molecule. As a second source of information besides
optical spectroscopy, this offers the possibility of a better in situ characterization of quantum
dot molecule samples.
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7.2 Strain in AlAs quantum wells and cleaved-edge over-
grown quantum wires

Introduction

For quantum information processing in semiconductor nanostructures, a thorough understand-
ing of electronic correlations is extremely important. On the one hand, intentional quantum
mechanical correlations between electrons are the basis of multi-qubit operations. On the other
hand, unintentional correlations may lead to decoherence and should therefore be minimized.
One-dimensional systems of heavy electrons (effective mass m* of order myg, where myq is the
free electron mass) are promising candidates for the study of electronic correlations in semicon-
ductors. However, owing to an inherent low mobility x ~ 1/m* and fabrication challenges, few
realizations are reported in the literature. Experiments in Si [146-148] and Si/SiGe [149-151]
quantum point contacts, which begin to address this limit, have only focused on transport in
(100)-plane structures with a light, isotropic in-plane mass m* = 0.19my. Aluminum arsenide
(AlAs) is an alternate heavy mass system with degenerate valleys and anisotropic mass. In
AlAs the constant energy surfaces are ellipses centered at the X; points (i = z,y, z) at the Bril-
louin zone edge, characterized by a heavy longitudinal mass mj; = 1.1m( and a light transverse
mass mj = 0.19mg [152]. The energy minima at these X points are highly sensitive to strain
[153, 154].

In Ref. [154] a strain induced degeneracy crossover between two-dimensional subbands be-
longing to different X valleys has been demonstrated for two-dimensional AlAs/Al,Ga;_,As
quantum-well systems grown along the (100) direction experimentally as well as theoretically.
Here we confirm the observed crossover and predict the quantum-well width for the crossover
in systems grown along the (110) direction.

The order of subbands belonging to different X valleys is also important for the analysis
of transport properties of AlAs quantum wires as it affects valley degeneracies. In Ref. [155]
conductance measurements of a quantum wire fabricated at the edge of an AlAs two-dimensional
electron system using cleaved-edge overgrowth (CEQO) were reported. Two conductance steps
were observed at low electron density, with height Gy ~ 0.44¢?/h and therefore much lower
than expected. Here we discuss the role of strain in relation to the observed 1D conductance.

Results and Discussion

We first address the influence of strain in AlAs quantum-wells on the level structure of the two-
dimensional subbands. In two-dimensional AlAs systems, strain splits the degeneracy of the
X, Xy, and X, valleys from a mean value Ey by an amount A [153], which is then compensated
by the quantum confinement in the growth direction along the z-axis

h2m? 1
E, = E,—E,—Ey+—"__Ia
e e A
h2m? 2
E. = Eg+ " 4 2A 7.1
ot e 3 (1)

These equations hold for growth in the (100) direction if we assume that the quantum well
can be modeled by an infinitely deep potential well of width W. We have calculated the
strain-induced splittings between F,, and E, charge self-consistently within effective mass
approximation for two-dimensional AlAs/Al,Ga;_,As quantum-well systems grown along the
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Figure 7.9: Energies E,, (red curves) and E, (black curves) of the lowest subband for two-
dimensional AlAs quantum-well systems with (100) (solid lines) and (110) (dashed lines) growth
direction. The crossover F,, = F, depends only slightly on the growth direction.

(100) and (110) direction for various well widths. The structure consists of a single AlAs
quantum-well embedded on both sides in a five periods 20 A /10 A GaAs/AlAs superlattice.
Two buffer layers of Alg3;Gagg3As terminate the superlattices. Free carriers are provided by
§-doping layers (0.75 x 107*2cm™2) at a distance of 40 A on both sides of the quantum well.
The same structure has been analyzed experimentally as well as theoretically in Ref. [154] for
the (100) growth direction only. In Fig. 7.9 we have plotted the energies E, and E,, as a
function of the well width. Our calculations for the quantum-well systems grown along the
(100) direction confirm the degeneracy crossover E,, = E, at a well width of W ~ 55 — 60 A
that has been demonstrated experimentally in Ref. [154]. For wider quantum wells such as
the one in Ref. [155] the strain term dominates Eq. (7.1) and E,, < E,, yielding dual valley
degeneracy.

Only recently high-mobility two-dimensional AlAs/Al,Ga;_,As quantum-well systems have
been grown along the (110) direction [156]. From our calculations for the quantum-well systems
grown along the (110) direction we predict that the degeneracy crossover occurs for approxi-
mately the same well width. However, it is important to note that the dependence of the energy
difference |E,, — E,| on the well width is smaller by more than a factor of 2 for (110)-grown
systems as compared to (100)-grown systems. In cases where it is important to distinguish
between contributions of the E,, and the £, subband this might therefore prove to be more
difficult in (110)-grown systems than it is in (100)-grown systems.

We now turn to the role of strain in AlAs quantum wires. The samples considered in
Ref. [155] were fabricated with the same CEO technique also employed for ballistic GaAs wires
[157]. They contain a modulation-doped AlAs quantum well [158] flanked by two Al,Ga;_,As
dielectric barriers (x = 0.45). The samples are grown on a (001)-oriented GaAs substrate
by molecular beam epitaxy. A 150-A-wide quantum well resides 4000 A below the surface,
and a 1-pm-wide tantalum gate is patterned on top of the heterostructure. The samples are
cleaved in situ, and the exposed (110) facet is overgrown with a modulation-doping sequence.
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Figure 7.10: A schematic of the AlAs quantum wire sample. The protruding red cylinder
represents the wire at the edge of the AlAs 2D system; yellow: AlGaAs, green: AlAs, blue:
doping layers, orange: top gate, gray: cleavage plane. The figure is not drawn to scale.

A schematic of the sample is shown in Figure 7.10. For the further discussion, we define
basis vectors &, 7, 2 = [100], [010], [001] as unit vectors along the crystal axes and unit vectors
i = (&—9)/vV2 = [110] and b = (& +§) /v/2 = [110] The vector @ denotes the direction
parallel to the wire, b denotes the direction normal to the cleave plane.

We have performed calculations of the strain field in the two-dimensional (l;, Z) plane to
determine the various spatially dependent X-band energies near the cleave plane. The subband
energies have been determined charge self-consistently within effective mass approximation.

In Fig. 7.11, the spatial dependence of strain in the (13, Z) plane perpendicular to the wire
is depicted. Figure 7.11 (a) shows the ., = ¢, components of the strain tensor. Maximum
compressive strain is shown in red and can be found in the AlAs well away from the cleave
plane. Figure 7.11 (b) shows the ¢,, component of the strain tensor. Here, maximum tensile
strain is shown in red. Maximum tensile strain is found to the right of the AlAs well in the
AlGaAs cleave plane. We want to note that €,, = ¢,, is required by the symmetry of the
structure. As a consequence, the X, and X, valleys are shifted by the same amount and the
valley degeneracy g, = 2 in the lowest bands of the two-dimensional well is preserved even in
the wire region.

Figure 7.12 shows the effect of the strain alone on the X, and the X,, bands in the b
direction in the middle of the well. Far from the cleave plane, the valley splitting of the band
edges reaches 15 meV. This valley splitting is decreased down to 7 meV at the cleave plane, since
both compressive €., = €,, and tensile ¢,, strain components decrease in magnitude towards
the cleave plane. Figure 7.13 shows the results for the charge self-consistent calculation of the
band edges. The two-dimensional electron gas in the AlAs quantum well has been depleted
underneath the tantalum gate. Also shown in this figure are the energies of the first and second
X,y one-dimensional subband, the energy of the first X, one-dimensional subband, the Fermi
energy, and the probability density of the first X, one-dimensional quantum state. We note
that the energies of the first and the second X, subbands are below the energy of the first X,
subband. The first X, subband is the only subband below the Fermi energy. The probability
density of the corresponding quantum state is located within 20 nm from the cleave plane.

The author’s present calculations have been published in Ref. [155] to help in understanding
the conductance measurements that has been performed for the sample shown in Figure 7.10.
In Ref. [155] two conductance steps were observed at low electron density, with height Gy ~
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Figure 7.11: (a) Compressive ¢,, = &,, and (b) tensile ¢, strain components in the (b, ) plane.

0.44€?/h. Our calculation shows that the two lowest one-dimensional subbands belong to X,,,.
This is not a priori obvious, as the large splitting of 15 meV between the X, and the X in the
well far from the cleave plane is reduced towards the cleave plane by more than a factor of 2.
Thus the two conductance steps can both be attributed to the doubly degenerate valleys X, and
X,. This is important since the valley degeneracy g, enters the one-dimensional conductance
quantum within the Landauer-Biittiker formalism according to Gy = g,g.,£e*/h, where g, = 2
denotes the spin degeneracy, and ¢ is the transmission factor. Therefore, we can conclude that
in the ballistic regime G should be equal for the two lowest conductance steps and identical
to 4e?/h as they belong to the same doubly degenerate valleys X, and X,. The measurements
indicate that the two lowest conduction steps are indeed equal in height, but smaller than 4¢*/h
by almost a factor of 10. This reduction of the conductance quantum is most probably caused
by a back-scattering induced suppression of the transmission coefficient.

Summary

We have presented calculations of the electronic structure of strained AlAs quantum-well and
cleaved-edge overgrown quantum-wire systems. For the quantum-well systems we have con-
firmed the degeneracy crossover of the two lowest two-dimensional X valley subbands that
has been experimentally observed for quantum wells grown along the (100) direction. For the
(110) direction we have predicted that the degeneracy crossover occurs for the same quantum
well width. However, the energy difference between the two lowest subbands depends less on
the quantum well width by more than a factor of two for the (110) direction as compared to
(100). For the quantum-wire systems, our self-consistent calculations including strain, doping
profiles, and piezoelectricity have yielded the subband level ordering. This has contributed sig-
nificantly to the understanding of recent measurements of the transport properties of strained
AlAs cleaved-edge overgrown quantum wires.
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Figure 7.12: X,, and X, band structure in the center of the well along the b direction (distance
is measured from the cleavage plane). The figure shows the strain-induced splitting of the valley
degeneracy.
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Figure 7.13: X,, and X, band structure in the center of the well along the b direction (distance
is measured from the cleavage plane). The band structure has been calculated charge self-
consistently within the effective mass approximation. The energies Egy, E;y of the first and

second 1D X, subbands as well as ES of the first X, subband are indicated. Ex = 0 is the
Fermi energy. The probability density of the first X,, 1D state is indicated (green curve).



Chapter 8

Summary and Outlook

The topic of this work was to study the physics of quantum logic gates built from semiconductor
nanostructures by detailed, numerical calculations within realistic, three-dimensional models.
The goal of these studies was to provide concrete proposals for the realization of semiconductor
quantum logic gates including the detailed geometry, material compositions, doping profiles,
and bias voltages.

We have succeeded to propose a concrete single-qubit gate based on two parallel quantum
wires that are connected by two coupling windows. We have demonstrated by calculating the
electronic structure and ballistic quantum transport properties of this device that it acts as
the all-electric analog of a Mach-Zehnder interferometer. In particular, this means that the
device allows for the coherent manipulation of electrons that propagate through the quantum
wires. Thus, the electrons can be prepared in an arbitrary linear combination of the two
qubit states defined by the wires. These studies have also aided to a better understanding
of the physics of the coupling windows as coherent beam-splitters for electrons. In view of
an experimental realization of the proposed all-electric Mach-Zehnder interferometer we have
identified the beam-splitters as the most critical components in terms of fabrication precision.
In collaboration with the group of Dr. Stefan Ludwig at the chair of Prof. Jorg Kotthaus
(LMU Munich), a design for the beam-splitters as quantum mechanical current switches has
been developed, experimentally tested, and will be presented in the Diploma thesis of Daniel
Harbusch.

Based on the all-electric Mach-Zehnder interferometer, we have proposed a novel two-qubit
quantum transport device that consists of the interferometer and an electrostatically defined
single electron double quantum dot. The electrons in the interferometer and the double quan-
tum dot interact via the Coulomb interaction. This leads to an entanglement of the two
qubits. To study the proposed two-qubit gate within a realistic, three-dimensional model, we
have developed a novel method for the calculation of ballistic quantum transport in entan-
gled two-particle systems. The main result was the prediction that the entanglement causes
a suppression of the visibility of the Mach-Zehnder interference pattern and can therefore be
measured from its DC -V characteristics. In particular, this does not involve any higher order
current correlations. To this end, we have also developed an analytical model of the two-qubit
quantum logic device, for which we have derived an analytical relation between the visibility of
the interference pattern and the von Neumann entropy. Further, we have identified the opti-
mum geometric arrangement of the Mach-Zehnder interferometer and the double quantum dot
that yields maximum degree of entanglement between the two qubits.

With this thesis, we have also contributed to the area of material aspects of semiconductor
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based quantum information processing: We have performed a quantitative theoretical analysis
of the ballistic tunneling current through self-assembled quantum dot molecules embedded
within a resonant tunneling diode. Our calculations were based on a fully three-dimensional
model of the resonant tunneling diode with realistically shaped quantum dot structures. Self-
assembled quantum dots and molecules are ideal candidates for the realization of either excitonic
or spin qubits. With our calculations, we have shown that spectroscopic measurements of
the ballistic tunneling current through quantum dot molecules provide a wealth of unique
information on the size, inter-dot distance, lateral alignment, and electronic structure of these
molecules. This second source of information besides optical spectroscopy is of high value, as a
direct, non-destructive characterization of buried quantum dots and molecules is not possible.

Intentional quantum mechanical correlations between electrons are the basis for quantum
information processing in semiconductors. Unintentional correlations on the other hand lead
to decoherence and should therefore be minimized in quantum logic devices. Thus a thorough
understanding of electronic correlations is extremely important. One-dimensional systems of
heavy electrons such as AlAs cleaved-edge overgrown quantum wires are promising candidates
for studying electronic correlations. We have performed self-consistent calculations of the elec-
tronic states in AlAs cleaved-edge overgrown quantum wires including strain, doping profiles,
and piezoelectricity. This has aided considerably to the understanding of recent measurements
of the transport properties of such systems.

By the development of a novel method for calculating the charge carrier density in broken
gap heterostructures based on the 8-band £ - p approximation, we have contributed methodi-
cally to the field of electronic structure calculation in semiconductor heterostructures. With our
method it is now possible to calculate the electronic structure of a semiconductor heterostruc-
ture or superlattice charge self-consistently also in cases where valence band and conduction
band states are hybridized. In the future, this will be applied to the calculation of inter-band
transition energies and optical absorption coefficients in InAs/GaSb broken gap heterostruc-
tures. Those are of great interest for the fabrication of infrared lasers and infrared detectors.

As an additional benefit of the overall work, the simulation tool nextnano++ has been
developed and intensively used. The modular structure of nextnano++ and the use of modern
object oriented programming techniques such as inheritance and generic programming form
the basis for the easy maintenance and extensibility of this software packet. The additional
inclusion of magnetic fields has already led to the interesting application of g-factor engineer-
ing. Several proposals for semiconductor based quantum information processes exploit the idea
of selectively manipulating the g-factor for individual electrons. The combination of magnetic
fields with quantum transport will allow for realistic calculations of quantum Hall edge chan-
nels. This would allow one to study two-particle interference and entanglement in mesoscopic
quantum transport devices such as Aharonov-Bohm based Mach-Zehnder interferometers. In
this context, methods for the calculation of shot-noise and higher order current correlations
are required. For the near future it is planned to include weak scattering into our ballistic
quantum transport method in an empirical manner. This will then allow for self-consistent
quantum transport calculations also far from thermodynamic equilibrium. Another project is
to take into account the spin degree of freedom in quantum transport. The electron spin is of
interest for quantum as well as classical information processing applications. With the inclusion
of the electron spin in our quantum transport methods, the application of nextnano+-+ could
be extended to both, the simulation of classical spintronic devices and also spin based quantum
information devices.



Appendix A

Grid definition

In Chapter 2 we have introduced the box integration finite differences scheme for the discretiza-
tion of the partial differential equations on a non-uniform tensor product grid. Now, the topic
of this appendix is the determination of the non-uniform tensor product grid from a set of given
grid lines and spacings.

In the input file, the grid is defined by providing for each spatial dimension a list of major grid
nodes {x1,zs,...,zx} and a list of grid spacings {hi, ho, ..., hy}. The goal is to determine a

list of grid nodes that is composed of the major grid nodes and additional grid nodes in between

. . Ny . .
the major grid nodes {xl,x}, SR LI P S R ,lefll,xN}. For each major grid node

xn, the grid spacing h,, denotes the approximate spacing to the first additional grid node on
the left and on the right of x,. If the grid spacings h, and h,,; of two neighboring major
grid nodes x,, and x,,,; are different (we assume h,, < h, 1 for definiteness), the grid spacings
between the additional grid nodes in between x,, and x,,.; are chosen to increase exponentially.
For h,, = h,,.1 the intermediate grid spacings are constant and the grid in between x,, and x,, 11
is homogeneous.

Obviously, it is not always possible that the grid spacings between a major grid node z,, and
the first grid node to the left and to the right are exactly given by h,,. This is because we always
have to insert an integer number of additional grid nodes. If in the case of a homogeneous grid
the distance between neighboring major grid nodes z,, and z,,, is not an integer multiple of
the grid spacings h,, = h,, 11, it is simply not possible to insert an integer number of additional
grid nodes each having a spacing h,,. The same is also true for the case of an inhomogeneous,
exponential grid.

We therefore use the following method to determine the grid by inserting an integer number
of additional grid nodes while satisfying the conditions imposed by the given grid spacings h,,
as close as possible:

For a pair of neighboring major grid nodes x,, and z,,.1, we calculate the distance L,, between
those nodes

L, =Xy — Ty (A.1)
For the corresponding grid spacing h,, and h,.1, we distinguish the following two cases: h, =

hny1 and hy, # hyyq. For hy, = h,,1 we determine the number N,, of additional grid nodes in
between x,, and x, ., from

Ly = (Ny+ Dhn = (Ny + Dty (A.2)
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This yields for NV,

L
N, =" —1, A3
. (A3)
but in general N,, is not an integer. We therefore set
L,
N,, = round (h_ — 1) (A.4)
and determine new grid spacings h;, = h; ., from
L
. =h =" A5
nn n+1 Nn +1 ( )

These grid spacings now apply in between x,, and x, ;. The more interesting case is that of
h, # hni1. Here, we require that

)\N”“ 1

L, _th = (A.6)

where now we have to determine the grid factor \,, and the number N, of additional grid nodes.
Further, we have to satisfy the condition

st = (M) By, (A.7)

i.e. the spacing to the left of x,,,; is uniquely related to h,, by means of A, and N,,. Also in the
case h, # h,1 it is in general not possible to find a grid factor A\, and an integer number N,,
of additional grid nodes that satisfy Eq. (A.6) and Equation (A.7). This problem is resolved
as follows: First we solve Eq. (A.6) for \,, exploiting that ™™ = X\ A,y

/\nhn—i—l - hn
L, = ————
A—1
L,—h
Ln - hn+1 ( )
Then we solve Eq. (A.7) for N,
hn+1 - )\Nnhn
hn In hpy1
= N, =log, = = —_n (A.9)
hn ln L 'VL h mn
n—Nn+1
but in general this N, is not an integer. We therefore set
In Sl
N,, = round % . (A.10)
In oo
Tn41
Now we determine \,, from
AV 1L
Ap) = 2 —— T =0. A1l
FOw) = 22 = 2t (A1)

This can be easily done using bisection as f (),) depends monotonously on A,. Note that
by this approach, the grid spacing h,.; to the left of grid node x,., is changed according to
hpi1 — Wiy = (An)" " hy, whereas the grid spacing h, to the right of grid node x,, remains
unchanged.



Appendix B

Geometry processing

In Sec. 3.5 we have presented the definition of quadratic surfaces (also denoted as quadrics) by
means of a symmetric second rank tensor T as follows:

(x—m) -T(x—m) =0, (B.1)

where x denotes the points on the surface and m denotes a translation vector. In this appendix,
we show how this second rank tensor 7' can be determined from the parameters provided in
the input file for the two cases of ellipsoidal and conic quadrics.

B.1 Semiellipsoids

We restrict ourselves to the case where the base plane of the semiellipsoid is parallel to the x—y
plane. The semiellipsoid is then defined as shown in Fig. B.1 by specifying the base plane by
% = Zbase, the extensions z0 (2@ 0 o the semiellipsoid in the base pl d th
= Zbase; the extensions Ty ., Yp.ser Thaser Yrase Of the semiellipsoid in the base plane, an e
top of the semiellipsoid @op, Ytop, 2top i the plane z = z,, above the base plane. From these

input parameters we define vectors a’, b’, and ¢’ as follows

(2)

‘rbase
1 2
o = | () |- (B.2)
Zbase
L(att, o2,
b= Yyobe ! (B:3)
Zbase
xtop
C/ - ytOp . (B.4)
Ztop

We want to determine the symmetric matrix

t11 ti2 ti3
T = t1o Tog tog , (B5)
t13 T2z 133
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Figure B.1: Definition of semiellipsoids and cones. (a) The intersection of the quadric in the
base plane. (b) For a cone, ¢’ denotes the position of the cone’s tip, whereas for a semiellipsoid,
¢’ is the point of maximum extension in the direction normal to the base plane.

which by means of the following implicit equation
l=(x—m) -T(x—m)
describes an ellipsoid with mid point m

(1)

<mbase

(2)
+ xbase

i +2.) | (5.6

Zbase

1
2
m = 1
2

We have to determine the six coefficients tq1, ti2, t13, f22, to3, and t33 from the following
conditions

1 = (@—m)-T(@ —m),
1 = (b—m)-T(b'—m), (B.7)
1 = (’-m)-T(c—m), (B.8)

i.e. a’, b/, and ¢’ are points on the surface of the ellipsoid. We shift a’, b’, and ¢’ by m

% (xf)Qa)se - xé?se)

a = a-m= 0 ; (B.9)
0
0

b= b-m=| (s -vil) | (B.10)
0

1 (.1 (2)
Ttop — 5 | Thase + Thase

1

2

WO ) . (B.11)

base

Ztop — <base
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Now, the conditions for T" read

1 = a-Ta= alaltll, (B12)
1 = b-Tb = bybytas, (B.13)
1 = ¢c-Tc= 0101t11 -+ 20102t12 -+ 201037513 —+ CQCQtQQ + 20203t23 + 03C3t33. (B14)

These three conditions do not determine the ellipsoid completely. We have to further require
that for x = ¢, x, is extremal under the condition 1 = x - T'x

g(x) = z, = extremum!, (B.15)
fx)=x-Tx—1=0. (B.16)
We introduce a Lagrange multiplier A\. This results in
c-Tc = 1, (B.17)
Vo()|o—e AV f (%) lxee - (B.18)

Only the second equation represents an additional condition and yields

0 = 2)\t1ncn =2\ (tllcl + t1202 + t1303) — t1101 + t1202 + t1363 = 0, (Blg)

0 = 2)\t2n6n =2\ (tlgCl + t2262 + t2303) — t12€1 + f}QQCQ + t2363 = 0, (BQO)
1

1 = 2)\t3ncn =2\ (tlgCl -+ t2302 —+ t3303) =54 t1301 + t2302 + t3303 = ﬁ (B21)

Equations (B.12), (B.13), (B.14), (B.19), (B.20), and (B.21) are still not sufficient to determine
all six independent coefficients of 1" as only five of these equations are independent. We discard
the last one involving the Lagrange multiplier. The condition that is missing can be identified
by considering the case that

c=1 0 |. (B.22)

Then t11, to2, and t33 follow immediately from the first three conditions and ¢13 as well as t53
are found to vanish according to the remaining two conditions. The coefficient ¢;5 cannot be
determined from the present conditions. This coefficient fixes the orientation of the principal
axes of the ellipsoid in the base plane. The information about the orientation of the principal
axes of the ellipsoid in the base plane is not provided by the parameters in the input file, instead
we assume that

t12 = 0. (B.23)

The meaning of this condition is that the principal axes in the base plane are parallel to the
coordinate axes. The coefficients of the tensor 7" are then determined by solving the following
system of linear equations

aiaq 0 0 0 0 0 t11 1
0 0 0 by 0 0 t1o 1
Cc1Cq 2C102 261C3 CoCo 2C203 C3C3 t13 . 1
C1 Co C3 0 0 0 t22 o 0 (B24)
0 C1 0 Co C3 0 t23 0
0 1 0 0 0 0 t33 0
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For the coefficients we find

1
11 ‘8
l12 i
l13 aj c3
; = 1 (B.25)
22 b2
_le
t23 bi c3
t33 1, 1¢ 14
gtagTeg

B.2 Cones

Again, we restrict ourselves to the case where the base plane of the cone is parallel to the z—y

plane. The cone is then defined by specifying the base plane by z = z}.¢, the extensions xl(ola)se,

yl()la)se, x,(oi)se, yéza)se of the cone in the base plane, and the tip of the cone iy, Ytip, 2tip in the plane

% = zip above the base plane. We want to determine the symmetric matrix

t11 ti2 t13
T'= | tig too toz |,

t13 o3 133
which by means of the following implicit equation
0=(x—m) -T(x—m)
describes a cone with mid point m. The mid point is given by the tip, i.e.

Ltip
m=| yp |- (B.26)

Ztip
From the input parameters we define vectors a, b, and ¢

(2) (2)

Thase Thase — Ltip
1 2 1 2
a = % (yéa)se + yl()a)se> —m = % (yl()a)se -+ yé;se) — Ytip s (B27>
Zbase Zbase ~ ~tip
1 2 1 2
% (‘T}(Ja)se + xl()a)se % (‘Tl(aa)se + xl()a)se — Ttip
b = 2) —m= 2) B.28
Ybase m Ypase — Ytip ’ ( )
Zbase Zbase — <tip
xtip
c = Yip | —m=0. (B.29)
Ztip

Obviously, the condition that c is a point on the surface of the cone is immediately satisfied

O=c-Tc.
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Thus, the following two conditions remain

0 = a-Ta= a1a1t11 + 2a1a2t12 -+ 2&1&3t13 -+ a2a2t22 —+ 2a2a3t23 —+ a3a3t33, (B?)O)
0 = b-Tb= blbltll + 2b1b2t12 + lebgtlg + b2b2t22 + 2b2b3t23 + b3()3t33. (B31)

We further assume that
t12 - O, (B32)

i.e. as for the semiellipsoid, the principal axes in the base plane are parallel to the coordinate
axes. Finally, we require that the direction k of the cone’s symmetry axis is an eigenvector of
T

Tk = )k, (B.33)

where A turns out to result in an overall scaling that is irrelevant and can therefore be set equal
to 1. In summary, equations (B.30) — (B.33) result in the following system of linear equations

aiaq 2@1(12 2a1a3 202 2(12&3 asas tll 0
blbl 2b1l)2 lebg b2b2 ngbg bgbg t12 0
0 1 0 0 0 0 tis | 0
k1 k2 k3 0 0 0 teo | | k1 | (B.34)
0 k1 0 k2 k3 0 to3 ko
0 0 k1 0 k2 k3 t33 ks
The direction of the symmetry axis can be calculated as follows
ax
k = X B, , (B.35)
where
a. EE
Zbase — Rtip b b
B = == B= 4 =, B.37
. b T (337
and

J}(l) o
base tip

a = %@&ﬁyﬁQmm), (B.38)
Zbase — Ztip

_ % J:I(E;)se + xlgi)se — Ttip

b = 1 . B.
yl(oa)se — Ytip ( 39)

Zbase — <tip
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Appendix C

k-p and strain Hamiltonian for wurtzite

In Chapter 1 we have presented the k - p Hamiltonian including strain for semiconductors
with zinc-blende crystal structure. Here we want to append the corresponding formulas for
semiconductors with wurtzite crystal structure.

k - p Hamiltonian The valence bands are created by the p orbitals in most semiconductors
and are therefore threefold degenerate. For this reason, the &k - p model for the valence bands
needs to include at least three bands in the orbital basis

’.I'1> ) ’$2> ’ ’$3> : (Cl)
For wurtzite this results in the following 3 x 3 Hamiltonian matrix
FLZ le’% + Mlk’g + Mgl{?g lelk’g Ngk’lk’g
HWZ’3X3 (k) = EV+2—k2+ le’gk,‘l Mlk’% + le'% + Mgk}% Ngl{?gk’g
m Noksky Noksks Ms (k? + k2) + Lok?
(C.2)

with Dresselhaus parameters Ly, Ly, My, Ms, N1, and N, according to Reference [159]. Includ-
ing spin

1) [1) 5 |22) [T) 5 Js) [T s [2a) [L) 5 |22 1) s} 1) (C.3)
the 6 x 6 Hamiltonian matrix is then given by
sz,3><3 (k) 4 sz,3><3 0
sz,6><6 k — CF HWZ,6><6 .4
w0 = ( ) s i 4 s +HE(C)

where H3z*® is due to the spin orbit coupling and Hye®*® is an additional contribution in
wurtzite due to the so called crystal field splitting. The spin orbit coupling is given by
0 —ils 0 0 0 As
(JAV 0 0 0 0 —ilA3

wz,6X6 0 0 0 —Ag 2A3 0
Hom =10 0 —a; 0 A, 0 (C.5)
0 0 —iA3 —iAy 0 0
Az iAs 0 0 0 0
with parameters A, Asz. For the crystal field splitting one finds
Ay 0 0
oS =10 A 0. (C.6)
0 0 0
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The crystal field splitting is characterized by the parameter A;. It lifts the degeneracy of the
heavy hole band and the light hole band for k = 0 also in the absence of strain. The inclusion
of the conduction band at the I'-point results in the following 8 x 8 Hamiltonian matrix

wz,8 %8 _ H:VZ (k) Hg\‘/]z (k)
H (k) - (sz (k) sz,6><6 (k)) ) (07)

where 2
H:vz (k) = <Ec + % [SQk2 —+ (Sl — 52) k%]) ® 1oxa (CS)
is the 2 x 2 submatrix for the conduction band with parameters Sy, Sy and

Bikoks + 1Pyky
HY (k) = [ Bokiks + iPoky | ® 1gy2, H? (k) = H?® (k)" (C.9)
Bskiky + i Py ks

describes the coupling of the conduction and valence bands by means of the parameters B,
BQ, B3, Pl, and PQ.

Strain In the orbital basis |z1) , |z2), |x3) one obtains the following contribution to the k - p
Hamiltonian due to strain

lie11 + Mg + moess ni€12 N2€E13
Wz
SV = NnNi1€12 mic11 + 11622 + MoEss N9E23 . (ClO)
T2€13 T2E23 mg (€11 + €22) + lae33

This has to be added to the 3 x 3 Hamiltonian matrix H"*3*3 (k) for spin up as well as for spin
down. The parameters [y, l5, my, ma, m3, ny, and ny depend on the deformation potentials d,
dy, d3, dy, ds, and dg as follows:

li = ds+dy+do, ( )
ly = dy, ( )
my = dq+ dy — ds, ( )
my = di+ds+ ds, (C.14)
ms = da, ( )
ny = 2ds, ( )
(C.17)

Ng = \/§d6



Appendix D

Recombination and mobility models

The drift diffusion model for electronic transport introduced in Chapter 1 depends on recombi-
nation and generations rates as well as on the mobilities of the charge carriers. In this appendix,
we summarize the various models that are employed within nextnano-++ for the determination
of these quantities.

Recombination models Several mechanisms for the recombination of holes and electrons
exist. Here we list the ones that are accounted for in nextnano-+-+:

1. Schockley-Read-Hall recombination: Recombination via a deep trap in the middle of the

band gap

p-n—n;
Tp-(n+n) +7,- (p+n;)
where n; is the intrinsic density. The scattering times 7, and 7,, depend on the impurity
concentrations Np, N4 and are given by the semi-empiric Kendall relation

(D.1)

Rspu =

T1,0

Np+Ny?
1 IVNDTIVA
+ Nl ref

T = [ =p,n. (D.2)

The intrinsic density is given by

(Z N&(T) Fryo (Br — ES (x)) + ZN ) Fupe (B (%) — EF)> (D.3)
where the Fermi energy Er is determined for each x so that Y, N¢ (T') Fi 2 (Er — E& (x))—
22 N (T) Fyz (B (x) — Ex) = 0.
2. Auger recombination: The empirical formula for Auger recombination is given by
Rauger = Con (p° — n7) 4+ Cpp (n® — ) . (D.4)

Auger recombination is a three-body effect and therefore occurs predominantly in regions
where the charge carrier density is high. (), and C), are material dependent parameters.

3. Radiative recombination describes the direct recombination of electrons and holes by a
photon emitting transition. This kind of recombination is important only in semiconduc-
tors with a direct band gap such as GaAs. For indirect band gap semiconductors, the
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probability for a radiative recombination is low because this requires the additional con-
tribution of a phonon for reasons of momentum conservation. Radiative recombination is
described as follows:

Rradiative = C (np - n?) ) (D5)

where C' is a material dependent parameter.

Mobility models Several mobility models can be combined. The total mobility u then
results from the mobilities y; of the individual models according to Mathiessen’s rule [39]:

1 1
i Z - (D.6)

In nextnano++ we have implemented the following mobility models: constant mobility, Mini-
mos [160], Arora [161], and Masetti [162]:

1. Constant mobility:

T —¢
= e . D.
Heonst Ky, (300 K> ( 7)

The constant mobility model is independent of the impurity concentration N; = N4+ Np.
It depends only on the two material dependent parameters p; and (.

Minimos:
M, — Hmin
(%) = i + = (D.8)
1+ (%)
ref
where ( )
= Hmin,300 \ 300K for T > Tswitch D.9
Hmin { ﬂmm 300 ( )’Y ( T )72 for T < Tswitch ) ( . )
T 73
C’re = C(re AT, s D.10
= Cutan (350 (D.10)
T Ya
= — . D.11
&= s00 (300K> (D-11)

The Minimos mobility model depends on the following 9 material dependent parameters:
Hrs Mmin,3000 Y15 V20 V35 V4o Tiwitch, Cref,3007 and azno.

Arora: i
M= Hpmin + —dA*7 (D12)
1+ (%0)
where - o T .
C=A [ —— = A, | —— D.1
Homin min (300 K) ) Ha d (300 K) ) ( 3)
T aN . T Ga

= Aw (3001{) A=A (3001{) ’ (D-14)

The Arora mobility model depends on the following 8 material dependent parameters:
Amirn (075°% Ad7 g, ANa an, Aaa and Qg



127

4. Masetti:

PC Heonst — Mmin I
K= Hmin1 €XP (_F> + - N\ O 2 - s 8" (D15>
The Masetti mobility model depends on the following 8 material dependent parameters:

Honints FOs Pmin2s Cr,y @, 141, Cs, and B. In addition, the mobility ., from the constant
mobility model enters the Masetti mobility model.
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Appendix E
Alloys

In the database, material parameters are provided only for unary or binary materials such as
Si, Ge, GaAs, AlAs, etc. Material parameters for ternary, or quaternary materials, such as
Al,Ga;_,As or Al,Ga;_,As,Sb;_, are determined from the material parameters of the binaries
that they are composed of. For this, we use polynomial interpolation formulas. The simplest
approach is linear interpolation by means of a convex combination. However, it turns out that
for the calculation of some material properties of ternaries or quaternaries, a second order term
should be included. This is widely known as bowing.

For the common material system Al,Ga;_,As, the bowing parameter depends on the alloy
composition z. We have developed consistent interpolation schemes for ternaries as well as
quaternaries that also take such dependencies of the bowing parameter on the alloy composition
into account in linear order [163]. These schemes are presented in the following.

E.1 Alloys of the type A,B;_,

For alloys of this type (and also A,B;_,H where H is an inert component) we can use linear
interpolation

O (@) =afa+(1-2)fs (E.1)
to compute the material property f as a function of the concentration x with
fa=fA), fs=f(B). (E.2)

A second order interpolation scheme f?) (r) that is consistent to the components A and B can
be obtained by adding a quadratic bowing parameter as

fP(x) =afa+ (1 —2) fz+ (1 —2) fas. (E.3)
Finally, a consistent third order interpolation is given by

® () =zfa+(1—2) f+2(1—2)fas ()
—afa+(1—2)fo+z(l—x)[efg+ (1 — ) fig] (E.4)

where fap (z) is a bowing parameter that depends linearly on z.
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Ternary Quaternaries
x=0, y=1
BC AB, C AC
B y=1 L ]
x=0 xf1
s e " B,C., AB, x+y=1  BGCD,, AB,CD., ACD,,
X —1-x
C AC,, A y=0 & v

BD AB,D AD

X —1-x

x=0, y=0 x=1, y=0 x=0 x=1

Figure E.1: Composition of ternaries A,B;_, and quaternaries A,B,Ci_,_,, A;B1_,C,D1_,
from binaries A, B, C, and D.

E.2 Alloys of the type A,B,C_,_,

For alloys of this type (and also A,B,C;_,_,H where H is an inert component) we can use
linear interpolation

fY () =afa+yfe+ (1 -z —y) fo (E5)
to describe the material property f as a function of the concentrations z and y with

A second order interpolation scheme f) (z) that is also consistent to the three limiting one-
parameter alloys A,B;_,, A,Cy_;, and B,C,_, is given by

fO@y)=afatyfs+(l—z—y) fetayfap+rz(l—a—y) fac+ty (1 —2—y) fec (E7)

where fag, fac, and fgc are the bowing parameters for the limiting one-parameter alloys.
Additional bowing that does not change the results for the limiting one-parameter cases can
be achieved by adding a third order term as

fE(wy) =afat+yfs+ (1 —z—y) fotayfas+o(1—2—y) fac+y (1 —2—y) fec
+ 2y (1 —x —y) fasc. (E.8)
This extra term is also needed in order to achieve bowing on one of the three constraint surfaces
T = xg, Y = Yo, T +1y = 2. (E.9)
But the most general third order interpolation scheme has 10 parameters. With
fO@y)=afa+yfe+ 1 —z—y) fot+ay [zf s + yfis)

+a(l—z—y) [vfac+ (1 -2 —y) fid

+y (=2 —y) [yfec + (1 — 2 —y) fic]
+ 2y (1 —x —y) fasc (E.10)

these parameters can again be chosen consistent to the three limiting one-parameter alloys.
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E.3 Alloys of the type A,B;_,C,D;_,

For alloys of this type (and also A,B;_,C,D;_,H where H is an inert component) we cannot
use linear interpolation to describe a material property f as a function of the concentrations
x and y, since we need here at least four interpolation coefficients. For this reason, we add a
quadratic term and use

£ (z,y) =2yfac+ (1 —2)yfec+2x (1 —y) fap + (1 —2) (1 —y) feD

to interpolate f with

fac = f (AC), fec = f(BC), fap = f(AD), fep = f(BD). (E.11)

To get an interpolation scheme that is consistent to the four limiting one-parameter alloys
A,B,_,C, A;B,_.D, C,D;_,A, and C,D,_,B, we have to add both quadratic and cubic terms
as

FI9 (2,y) = vy fac + (1 —2) yfec + 2 (1 —y) fap + (1 —2) (1 — ) fep
+x(1—z)yfapc+a(l—2)(1—y) fasp
+2y(1—y) fepa+ (1 —2)y (1 —y) feop (E.12)

in order to achieve consistency, where for instance fag ¢ is the bowing parameter for the limiting
alloy A,B;_,C. Additional bowing that does not change the results for the limiting one-
parameter cases can be achieved by adding a fourth order term as

fE (2,y) = vyfac + (1 —2) yfec + 2 (1 —y) fap + (1 —2) (1 —y) fep
+2(l—2)yfapc+x(l—2)(1—vy) fasp
+2y(1—y) foba+(1—2)y(1—y) fepp + 2 (1 —2)y (1 —y) fapep.  (E.13)

This extra term is also needed in order to achieve bowing on one of the three constraint surfaces
T = xg, Y = Y%, y— Aoz =0, (E.14)

where the third type of constraint is used for strain compensation. By adding more cubic and
fourth order terms as

Y (@y) =ayfac+ (1 —2)yfec+2(1—y) fap+ (1 —2) (1 —y) fep
+z(l—-x)y [fffﬁB,c +(1—xz) fEB,C} +z(l—2)(1-y) [$f£B,D +(1—xz) fEB,D]
+ay(1—y) [nyCID,A + (1 —y) ng,A} +(1-2)y(l1—y) [yng,B + (1 —y) ng,B]
+2(1—2)y(l—y) fascp (E.15)

we can also achieve consistency to the limiting one-parameter alloys.
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Appendix F

Analytical model: detailed calculations

F.1 Transfer matrices

In this appendix we present the details of the derivation of the transfer matrices given by
Eq. (6.9) and Eq. (6.10) in Sec. 6.4.2. For this, we have to solve the quantum mechanical
scattering problem given by Hy + V (z), where Hy is the Hamiltonian given by Eq. (6.5) and
V' (z) is the interaction given by Equation (6.6). In matrix form, the total Hamilton operator
H = Hy+ V (x) can be expressed as follows

1000 ~A —t 0 0 0000
2
(o100 1|l -t A 0 0 000 0
H=omlootolT2l o o —a =|TY[0 00 o]f@0L—m). (F1)
0001 0o 0 —t A 0001

We assume t, A > 0, further U > 0. The latter corresponds to a repulsive interaction as the
Coulomb interaction between two electrons. We have expressed the Hamiltonian H in terms of
the basis states

Uiy (1) = exp (i) [)" 7). 4.5 =0,1. (F.2)
These states describe the two electrons in the quantum wires and the double quantum dot as
follows: the first electron propagates along the x axis in either of two states |O)W and ]1>W,
corresponding to the two quantum wires. The second electron occupies one of the ground states

of the two uncoupled quantum dots, represented by states [0)” and [1)”. We determine two
additional basis sets that diagonalize

-A —t 0 O
11 -t A 0 0
W D _ +
1y ®H =51 0 0 -A —t (F.3)
0o 0 —-t A
and
-A -t 0 O 0000
11 -t A 0 0 0000
w D _ L
L@ H7HV=51 09 o —a | TV 000 0 (F-4)
0o 0 -t A 0001
The first basis set is given by
Vi (@) = exp (ikz) [i)" | X)7 (F.5)
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where X = B, A and

B)” 82 )?, (F.6)
\/t2 — 2E5)? \/t2 — 2E3)?
AP = 2= 2E t ), (F.7)

\/t2 —2F,) \/t2 —2E,)°

with energies Ep = —%\/ 2+ A% and EFy = 5\/ t2 + A2. The second basis set is given by

Uix (x) = exp (ikz) i, X) (F.8)

where again, 1 = 0,1, X = A, B and

0,8) = [0)" |B)" . (F.9)
10, 4) = [0)" |47, (F.10)
1,8) =)™ (an |B)” + 8514)") . (F.11)
1,4y = DY (aa B + 8414)7). (F.12)

with energies Ey 5 = £ (U —¢) and Ey 4 = 5 (U +¢), where ¢ = 4/2 4+ (U + A)? and coeffi-
cients

oy = v | (F.13)

\/(4EX (Ex +¢) + AU) + t2U?
4EX (EX —|— E) —|- AU
VUEx (Ex + ) + AUY 4 2202

For the solution of the scattering problem, we now solve the stationary two-particle Schro-
dinger equation H1) = E1 separately in the three spatial regions 2z < 0,0 < 2z < L, and z > L.
Employing the two additional basis sets, the solutions for the total energy E are given by

Bx = (F.14)

exp (+ikxz) iYWV X)) forz <0
by (z) = oxp (£ig; x) Ji, X) for0<a <L | (F.15)
exp (+ikyz) VWXV forz>L

where ky = \/2m (E—FEx) and ¢, x = = \/ 2m (E — E; x). We determine general solutions
for each of the three spatial regions by formmg hnear combinations of the basis functions

=D D> > ANy (x) forx <0, (F.16)

i=0,1 X=B,A o=+,—

W Z Z Z B szX () for0<az< L, (F.17)

1=0,1 X=B,A o=+,—

=D D> > Ciix(x) forz> L. (F.18)

i=0,1 X=B,A o=—+,—
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Our goal is to determine the 8 x 8 transfer matrix 7' that connects the coefficient 8-vector
A = (A5X) and the coefficient 8-vector C' = (C¥) according to

C=TA. (F.19)

This transfer matrix follows from the continuity and differentiability conditions for ¢, ¢, and
(S

Yo (0) =y (0) and 0,9, (2)|,g = Outty ()], _, - (F.20)

Uy (L) =1, (L) and 0ppy (2)] _, = 0ut)s (7)), - (F.21)

However, we note that these conditions are trivial for the coefficients with ¢ = 0 as the interac-
tion V (z) vanishes if the electron in the quantum wires occupies the state [0)". The transfer
matrix 1T can therefore be written as follows:

1ixa Oyxa
T = F.22
<O4><4 T ) (F.22)

where 7T is a 4 X 4 matrix. The submatrix 7 can be decomposed into four 4 X 4 matrices p;,
Mo2s Mp 1, and py 5 according to

T = Py oy Boakos (F.23)

where the matrices p, ; (v =0, L, i = 1,2) are defined by

AP BYP
ALE B-?

Fo,1 ALA = Hop2 BMA | (F.24)
A B
By" oh
BLY chP

Kra BiA = HKrp oA | (F.25)
Bl7A 017,4

and have to be determined by means of Eq. (F.20) and Equation (F.21). Equation (F.20) yields

YOy AP Y Y BlX(aX|B + By |A) ) (F.26)

X=B,Ao=+,— X=B,Ao=+,—

S Y ik A1) = Y Y sigxBY <aX|B)D+ﬁX|A>D>, (F.27)

X=B,Ao=+,— X=B,Ao=+,—

and Eq. (F.21) yields

S Y BFe ik (ax B+ By A7) = 33D i)Y (F.28)

X=B,Ao=+,— X=B,Ao=+,—
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S Y ciax BN (ax B+ By [A)7) = D0 N aikyCRer e [x)P

X=B,Ao=+,— X=B,Aoc=+,—
(F.29)
By writing these equations in matrix form, we obtain
1,B 1,B
1 1 0 0 A1+B agp agp aa aa BJ{B
tkp —ikp 0 0 ATl i@ ap —iqi,BaB iqia0a  —iq1,A0A B>
1,A - 1,A )
0 0 1 L Ay B Bp Ba Ba B
. . 1 A P— P— Pa— PR— 1A
- _ ,BM¥B T YY1,BMB LAY A TUYLAMA _
0 0 tka —ika Al iq1,8/3 1q1,80p G145 iq1,403 B"
(F.30)
iq1.BL —iq1 gL i1 AL —iqy AL LB
ape'dB ape LB v petdnA e tnA B+
L - L e L - . g 1,B
quBozBe“h’BL —1iq1,BOBE iq,BL quAoer“thL —iq1,A04€ iq1,aL B>
5 B g A A
BBBZCII,BL ; 636 iq1,BL ; BAB'LQI,AL ; @Ae iq1,aL ; B+,
P ;. P — - .- — ;. P - 1A
iq1,BBpe' Y —iq pBe N EY iy aff 4" AT —iqy A a7 A B>
-7 7._ 1 B
eszL e ikgL 0 0 C+7
[ R 1,B
ikge*sl  —ikge~ikBl 0 0 Cc” F 31
0 O ei’_fAL efi’_ﬂAL C_]}-_,A ) ( : )
T ik T ik 1A
0 0 ikqetFal ik e tkal (O

from which we now read off the matrices pg 1, po 2, py, 1, and py 5 according to their definitions
given by Eq. (F.24) and Equation (F.25). Introducing the 2 x 2 matrix

([ exp (ikx) exp (—ikx)
va (k) = (zk exp (ikx) —ikexp (—zkx)) ' (F.32)

the matrices p, ; can be written in a compact form as follows:

o s — (yx (Ok:B) ) 8_{14)) 7 (F.33)

~ (apvy (iB) @avi(G1,a)
Ha2 = (537/ (q1,B)  Bav(q1,a) ) ' (F-34)

Note that in the presented form, the parameters of the model are over-determined. To get
rid of the redundant parameter, one can introduce a characteristic energy scale Eu,, by the
following definition

h2
Eaor = —— F.35
h 2mL>? ( )
so that the kinetic energy becomes

Ekin = charle; (F36)

where k£’ is the dimensionless wave vector resulting from

k/

k=— (F.37)

T
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In the same way dimensionless coordinates x’ are defined by
x=2a'L. (F.38)

The Hamiltonian in Eq. (F.1) can now be expressed with respect to the energy scale Eq,, as
follows:

1 000 -A" -t 0 0 0 00O
H o100 1= A 0 0 000 0
/ /2 L , ) -,
H_Echar_k 0010 +2 0 0 —A —# +U 0000 0(z")0(1—2"),
0001 0 0o -t A 0001

(F.39)
where A’, ¢/, and U’ are the splitting, tunneling, and coupling energies in units of Fu,,,, respec-
tively.

F.2 Eigenvalues of the reduced density matrix

In this appendix we present the details of the derivation of Eq. (6.27) in Sec. 6.4.3, which is the
basis of the relation between the visibility and the von Neumann entropy. We begin by deriving
the reduced density matrix of the first particle from the density matrix of the final state

EO,OEE)K,() E0,0E8,1 EO,OET,U EO,OEil
_ | BoaEGe Eoakg, EoiEio EoiLEi,
P=\ EwoEyy BBy, EvoBiy EioEp,
ELlan E171E6:1 ELIET,O E171Ei1

(F.40)

To obtain the reduced density matrix p,.4 we have to trace out the degrees of freedom of the

second particle, i.e.
Prea = Tr2 p. (F.41)

For this purpose, we define four submatrices p;; (i,j = 0,1) so that p is given by

p= <p00 plﬂ) . (F.42)

Po1 P11

These submatrices p;; have the following form:

EooEgo Eooki, EooETy Eooki,
— ) ) ’ ) , — ’ *’ ’ *7 5 F.4:3
Poo (EO,lEE)k,O EO,lEE)k,l P10 EO,lEl,O E071E171 ( )
EioEsy EioEg, Ei1oETy Er1oET;
— ) ) ? ) , — ’ *’ ’ *’ . F44
Pou (E1,1E§,0 E11Eg, i BBy EinBEq, (F44)

The trace over the degrees of freedom of the second particle can then be written as

Try p = Trpgy Trpye) _ (Eookop + EoiEgy Eookio+ Eoi By, (F.45)
? Trpg; Trpgy El,OES,o"‘ELlES,l ELOET,O—l—El,lEil ' .

We define transmission probabilities 7}, = |EZ~70|2 + |Ei,1|2 and the coherence Z = FEyoET, +
Ey 1 ET ; so that the reduced density matrix can eventually be expressed in the following form:

Ty Z >
pre = * . (F46)
¢ (Z Ty
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The eigenvalues of p,.4 are found to be

pi‘%Oiv@Wﬁ—ﬂwm»+Q- (F.47)

We now show that the eigenvalues p. can be expressed in terms of the visibility pattern
according to Eq. (6.27). For this, we calculate in the first step explicit expressions for the
transmission probabilities T};y. In Sec. 6.4.3 we have argued that the final state probability
amplitudes F; ; are given by

Eo; = % (exp (i¢) Ag; + A1), (F.48)
E ;= % (—exp (i¢) Ao + A1) (F.49)

in terms of probability amplitudes A; ; that characterize the state after the application of the
gates R and V' and that the most general ansatz for A, ; is given by

1 1

Aual = g oost (5 020). (F.50)
1 1

|A; 1|7 = 5 sin? (5 (v+ 0’)) . (F.51)

Here and in the following 4+ and — correspond to 0 and 1, respectively. From Eq. (F.48) and
Eq. (F.49) we determine the probabilities | E; ;|

1 ) . . 1 ]
|Eoi* = 7 (exp (i) Aj; + A7) 7 (exp (i¢) Ao + Arj)

1 * *
= 5 ( O,jAO,j + ALJ‘Al,j
+ [ Aol |Ar] [exp (i (¢ + 6;)) +exp (=i (¢ +6;))])
1
=3 (IAo 1% + |A1;]” + 2| Aoy |Ar] cos (¢ + 65)) (F.52)

and analogously

1E1;7 = = (JAos” + A1 ;17 — 2] Ao | |Arj| cos (¢ +5;)) . (F.53)

N | =

The phases §; are defined by
0; =arg Ag; —arg Ay ;. (F.54)

Thus

1
Ty = 3 (IAool® + |Arol” + Ao |* + | Avi |

+2 (‘A070| |A170’ COS (Cb + (50) + |A071| |A1,1| COS (¢ + 51)))

1
= 5 + |A070| |A170| COS (qb + 50) + |A071| |A171| COS (qb + 51) s (F55)



F.2. EIGENVALUES OF THE REDUCED DENSITY MATRIX 139

where we have used that |Ago|* + |A1 0> 4 [Aoa|* +|A11|> = 1. With Eq. (F.50) and Eq. (F.51)
we obtain

1 1 1 1
Ty = 5 + 5 cos (5 (v + 0)) cos (5 (v — 0')) cos (¢ + do)
1. /1 (1
i§ sin (5 (v + 0)) sin (5 (y— 0)) cos (¢ + 01) . (F.56)
For convenience, we introduce the following abbreviations: o = 2 (yv+0), 8 = (v —0),

gb} =¢+0d;,and 0 = % (0o — 61) so that Tj; is now given by

Ty =

—~
—_

+ [cos a cos 3 cos ¢y, + sin asin 5 cos ¢ ])
1 p 1 /
— (cos o + cos7y) cos ¢y + 5 (cos o — cos ) cos @)

—
H_

1
2
1
2 2
1 _1 / / 1 / /
=35 1+ §COSJ(COS¢O+COS¢1)+icosy(cosgbo—cosqﬁl)
1 : ] 5o + 0 ] 5o+ 0
= §(1:|: cosacosécos(gb+ o;‘ 1)~|—cosvsin5sin(gb+ 0; 1)])
e . -
ol 1j:\/cos2acos2(5+cos2’ysm dsing |, (F.57)
where 5L 5
6= 0+ 250 b arctan (- S2T2) (F.58)
cos 7y sin d

Thus we have found that the transmission probabilities Ty, and T3, show a sinusoidal oscillation
as a function of the phase angle ¢, and that the visibility of this oscillation is given by

v = \/c052 0 cos? § + cos? vy sin? . (F.59)

The second step is to evaluate the expression |Z|* — Tjo) T}y that occurs in Eq. (6.27) for the
eigenvalues of the reduced density matrix

Z* = TigThy = (EooEig+ BoaEiy) (E5oBuo + Ej1Ev)
— (|Eool* + [Eo1|*) (|1Evol* + [Eral)
= 2Re EO,OES,IEl,lEiO — (’E0’0’2 ’E1’1’2 + ‘EO,1|2 ‘E170‘2) . (F60)

For the first term in Eq. (F.60) we obtain
1 ) . X *
2Re EooEy B Efy = 3 Re [(exp (i¢) Ago + A1) (— exp (—i¢) Ago + ALO)
X (—exp (ig) Agq + A1) (exp (—ig) Ag,l + Ai,l)]
[(1400* = 1410/%) (JAo1|* — |A11]?)
"—4 |A1’0’ |A070‘ |A0’1| |A1’1| sin (Qb + 50) sin (¢ + (51) }

= % ((3082 a — cos? 5) (sin2 o — sin? ﬁ)

N | —

+% sin 2asin 25 sin (¢ + dg) sin (¢ + 1) . (F.61)
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With Eq. (F.52) and Eq. (F.53) we obtain for the second term in Eq. (F.60)

1
- (|E0,0|2 |E11,1|2 + |E071|2 |E170|2> = —— <

1 1
—cos® a + = cos® B + cos B cos a cos (¢ + dg)

4\ 2 2

2

1 1
<§ cos? o + 500825 cos 3 cos v cos (¢ + o)

IO,

1 1
X (—sin2a+ 231n26—|—smﬁsmacos o+ o

1 1
X (—sin2a+ 251n25—smﬂsmacos o+ 01 )
; )

—

= —= (0052 o + cos? 6) (sin2 o + sin? ﬁ)

— 00

+§ sin 2a:sin 23 cos (¢ + dg) cos (¢ + d1) . (F.62)

Obtaining |Z|* — TioyTj1y in the desired form as given by Eq. (6.35) requires a couple of trans-
formations by means of relations between trigonometric functions

|Z]° = Ty Ty =

2

1 _
(cos asin? § + cos? Bsin a) + 3 sin 2ar sin 23 cos 20

»-lklb—‘

—

sin 2av sin 23 cos 28 4 cos 2 cos 23 — 1)

1 - 1
5 (cos 20 — cos 27) cos 20 + 3 (cos20 + cos27y) — 1

VR

cos 20 cos? § + cos 2ysin® § — 1)

cos? o cos? 6 + cos® ysin? § — 1)

=~~~ |~ |k~
— — —

<
[N
|
—
~—

(F.63)

The eigenvalues p. of the reduced density matrix can now be written as follows:

b+

1
SO e

<1j:\/4i(v2—1)+1>

(1+v). (F.64)

N~ N~
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